Comparison of the behaviour of selected micropollutants in a membrane bioreactor and a conventional wastewater treatment plant

2004 ◽  
Vol 50 (5) ◽  
pp. 29-36 ◽  
Author(s):  
M. Clara ◽  
B. Strenn ◽  
M. Ausserleitner ◽  
N. Kreuzinger

Micropollutants as pharmaceutical active compounds (PhACs), residuals of personal care products or endocrine disrupting chemicals are of increasing interest in water pollution control. In this context the removal efficiencies of sewage treatment plants (STPs) are of importance, as their effluents are important point sources for the release of those substances into the aquatic environment. Activated sludge based wastewater treatment is the worldwide prevalently used treatment technique. In conventional plants the separation of treated wastewater and sludge occurs via sedimentation. A new development is the application of membrane technology for this separation step. The studies focus on the influence of the solids retention time (SRT) on the removal efficiency, as the SRT is the most important parameter in the design of STPs. A conventional activated sludge plant (CASP) and a membrane bioreactor (MBR) were operated at different SRTs. The substances selected are the antiepileptic carbamazepine, the analgesics diclofenac and ibuprofen, the lipid regulator bezafibrate, the polycyclic musks tonalide and galaxolide and the contraceptive 17α-ethinylestradiole. No significant differences in the removal efficiency were detected. Due to the absence of suspended solids in the MBR effluent, substances with high adsorption potential could be retained to slightly higher amounts.

2016 ◽  
Vol 74 (5) ◽  
pp. 1039-1050
Author(s):  
Gita Saini ◽  
Shalini Pant ◽  
Tanveer Alam ◽  
A. A. Kazmi

The occurrence of emerging contaminants such as endocrine disrupting chemicals (EDCs) in our water resources is of prime concern. With this context, fate and seasonal variation of six EDCs (testosterone, T; progesterone, P; diethyl phthalate, DEP; dibutyl phthalate, DBP; propyl-paraben, PP and butyl-paraben, BP) were assessed throughout the year, i.e. in rainy, winter, spring and summer seasons in the raw, treated wastewater and activated sludge in an activated sludge process (ASP) based sewage treatment plant (STP) located in Haridwar, India. Qualitative and quantitative measurements were performed by gas chromatography-mass spectrometry (GC-MS) analysis. Results indicate that in summer, the examined STP could effectively remove 82.9% of T, 86.4% of P, 95.5% of DEP, 92.4% of DBP, 91.5% of PP, and 89.9% of BP from the wastewater. Among the EDCs considered, higher removal efficiencies were achieved for phthalates in the summer season. GC-MS analysis showed that a small fraction of EDCs was sorbed on the solid fraction of activated sludge. Scanning electron microscopy, energy dispersive X-ray spectroscopy and Fourier transformation infrared spectroscopy analysis were also performed to investigate the occurrence of EDCs in biomass samples. Results of this study also demonstrated that removal efficiency, assessed in terms of physicochemical and microbiological parameters, was maximum in summer and reached minimum in rainy season.


2017 ◽  
Vol 77 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Yanjun Mao ◽  
Xie Quan ◽  
Huimin Zhao ◽  
Yaobin Zhang ◽  
Shuo Chen ◽  
...  

Abstract The activated sludge (AS) process is widely applied in dyestuff wastewater treatment plants (WWTPs); however, the nitrogen removal efficiency is relatively low and the effluent does not meet the indirect discharge standards before being discharged into the industrial park's WWTP. Hence it is necessary to upgrade the WWTP with more advanced technologies. Moving bed biofilm processes with suspended carriers in an aerobic tank are promising methods due to enhanced nitrification and denitrification. Herein, a pilot-scale integrated free-floating biofilm and activated sludge (IFFAS) process was employed to investigate the feasibility of enhancing nitrogen removal efficiency at different hydraulic retention times (HRTs). The results showed that the effluent chemical oxygen demand (COD), ammonium nitrate (NH4+-N) and total nitrogen (TN) concentrations of the IFFAS process were significantly lower than those of the AS process, and could meet the indirect discharge standards. PCR-DGGE and FISH results indicated that more nitrifiers and denitrifiers co-existed in the IFFAS system, promoting simultaneous nitrification and denitrification. Based on the pilot results, the IFFAS process was used to upgrade the full-scale AS process, and the effluent COD, NH4+-N and TN of the IFFAS process were 91–291 mg/L, 10.6–28.7 mg/L and 18.9–48.6 mg/L, stably meeting the indirect discharge standards and demonstrating the advantages of IFFAS in dyestuff wastewater treatment.


Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 421
Author(s):  
Dimitra C. Banti ◽  
Michail Tsangas ◽  
Petros Samaras ◽  
Antonis Zorpas

Membrane bioreactor (MBR) systems are connected to several advantages compared to the conventional activated sludge (CAS) units. This work aims to the examination of the life cycle environmental impact of an MBR against a CAS unit when treating municipal wastewater with similar influent loading (BOD = 400 mg/L) and giving similar high-quality effluent (BOD < 5 mg/L). The MBR unit contained a denitrification, an aeration and a membrane tank, whereas the CAS unit included an equalization, a denitrification, a nitrification, a sedimentation, a mixing, a flocculation tank and a drum filter. Several impact categories factors were calculated by implementing the Life Cycle Assessment (LCA) methodology, including acidification potential, eutrophication potential, global warming potential (GWP), ozone depletion potential and photochemical ozone creation potential of the plants throughout their life cycle. Real data from two wastewater treatment plants were used. The research focused on two parameters which constitute the main differences between the two treatment plants: The excess sludge removal life cycle contribution—where GWPMBR = 0.50 kg CO2-eq*FU−1 and GWPCAS = 2.67 kg CO2-eq*FU−1 without sludge removal—and the wastewater treatment plant life cycle contribution—where GWPMBR = 0.002 kg CO2-eq*FU−1 and GWPCAS = 0.14 kg CO2-eq*FU−1 without land area contribution. Finally, in all the examined cases the environmental superiority of the MBR process was found.


2013 ◽  
Vol 807-809 ◽  
pp. 694-698
Author(s):  
Rong Xin Huang ◽  
Zhen Xing Wang ◽  
Gang Liu ◽  
Qi Jin Luo

In order to guarantee the reliability and security of reclaiming water, research on the removal efficiency of the environmental endocrine chemicals (EDCs) --the Phthalate Esters (PAEs) in conventional secondary activated sludge and wastewater reclamation and reuse process was undergoing at Harbin wastewater treatment plant (WWTP). The wastewater samples were colleted from every unit effluent of WWTP. The results showed that contamination of EDCs were presented in municipal wastewater at Harbin and the concentrations of the four PAEs were 21.01μg/L for Di-n-butyl Phthalate (DBP); 9.63μg/L for Di-n-octyl Phthalate (DnOP); 4.56μg/L for Diethyl Phthalate (DEP); 1.96μg/L for Dimethyl Phthalate (DMP) respectively in the influent. The conventional activated sludge has good removal efficiencies performance on DMP, DEP and DBP. With the increasing of molecular weight and branch chains of PAEs contaminations, the removal rate of the four PAEs in the conventional activated sludge process decreased from 99.82%(DMP),90.60%(DEP),90.10%(DBP) to the only 45.13% removal rate for DnOP, which was mostly removed from primary treatment but no from secondary activated sludge process; Coagulation-air flotation plus filtration process was not a feasible way to remove PAEs from reclaiming treatment units.


2014 ◽  
Author(s):  
Tarunveer Singh ◽  
Shubhanshu Jain

Adsorption technique is widely used for removal of toxic organic contaminants from aqueous streams. Owing to the hazardous or otherwise undesirable characteristics of phenolic compounds in particular, their presence in wastewater from municipal and industrial discharge is one of the most important environmental issue. The discharge of poor quality effluents by the chemical-based laboratories and refineries in India is posing a serious threat to water sources and wastewater treatment installations alike. Our study was set up in the Indo - French Unit for Water & Wastewater Technologies (IFUWWT), IIT Delhi. The main objective of this study was to assess the efficiency of a laboratory-scale activated sludge treatment process in producing a final effluent conforming to regulatory standards of Central Pollution Control Board, India (CPCB norms) with regards to COD and metal ion loads. The study was conducted in three principal stages: characterization of wastewater containing nanoparticles; treatability studies of laboratory generated discards and investigations of heavy metal ions before and after treatment. The various raw effluent parameters analyzed were COD, BOD, F/M ratio, Sludge Value Index, Total Solids and concentrations of Cu, Ag and Zn. Studies were conducted using two aerobic sequencing batch reactors (SBR). MLSS of the aeration basin was calculated to be 7180±261.3 mg/L while the F/M ratio was kept down to 0.1560±.0149; besides, an SVI of 107.24 mL/g complied with the state of bioreactor’s sludge. These set of values suggested to set an extended aeration processes for the reactors. Accordingly, the detention time in aeration basin was 24 hours. The results showed over 98% influent COD reduction and nearly 100% removal of metal ions. The sample used was operated on sludge collected from Vasant Kunj Wastewater Treatment plant. Based on the results from waste characterization and treatability studies, it was decided that the mixed liquor discharged in the activation tank should have glucose solution and laboratory discarded sample in 1:1 ratio. The reactor was operated on a glucose fed batch basis for 30 days. For the sake of metal analysis, the digested water samples were analyzed for the presence of copper, silver and zinc using the ElementAS AAS4141 Atomic Absorption Spectrophotometer (by Electronics Corporation of India Ltd). The biosorption capacities were found to be over 95% in all the cases with the minimum correlation coefficient for calibration curve being 0.9811. Such a high sludge yield is suggestive of the fact that heavy metals are in very low concentrations in the considered carboy sample. Because of these insignificant values, the amount of metal ions introduced to the system gets adsorbed almost completely, hence leaving behind no metal ion within the supernatant. Well-treated wastewater has enormous potential as a source of water for crops, households and industry.


2017 ◽  
Vol 35 (1) ◽  
pp. 141-148 ◽  
Author(s):  
Michał Marzec

AbstractThe reliability of removal of selected contaminants in three technological solutions of the household sewage treatment plants was analysed in this paper. The reliability of the sewage treatment plant with activated sludge, sprinkled biological deposit and hybrid reactor (activated sludge and immersed trickling filter) was analyzed. The analysis was performed using the Weibull method for basic indicators of impurities, BOD5, COD and total suspended solids. The technological reliability of the active sludge treatment plant was 70% for BOD5, 87% for COD and 66% for total suspended solids. In the sewage treatment plant with a biological deposit, the reliability values determined were: 30% (BOD5), 60% (COD) and 67% (total suspended solids). In a treatment plant with a hybrid reactor, 30% of the BOD5and COD limit values were exceeded, while 30% of the total suspended solids were exceeded. The reliability levels are significantly lower than the acceptable levels proposed in the literature, which means that the wastewater discharged from the analysed wastewater treatment plants often exceeds the limit values of indicators specified in currently valid in Poland Regulation of the Minister of Environment for object to 2000 population equivalent.


2003 ◽  
Vol 47 (1) ◽  
pp. 105-111 ◽  
Author(s):  
D.D. Sun ◽  
J.L. Zeng ◽  
J.H. Tay

A 4 L submerged tubular ceramic membrane bioreactor (MBR) was applied in laboratory scale to treat 2,400 mg-COD/L high strength wastewater. A prolonged sludge retention time (SRT) of 200 day, in contrast to the conventional SRT of 5 to 15 days, was explored in this study, aiming to reduce substantially the amount of disposed sludge. The MBR system was operated for a period of 142 days in four runs, differentiated by specific oxygen utilization rate (SOUR) and hydraulic retention time (HRT). It was found that the MBR system produced more than 99% of suspended solid reduction. Mixed liquor suspended solids (MLSS) was found to be adversely proportional to HRT, and in general higher than the value from a conventional wastewater treatment plant. A chemical oxygen demand (COD) removal efficiency was achieved as high as 98% in Run 1, when SOUR was in the range of 100-200 mg-O/g-MLVSS/hr. Unexpectedly, the COD removal efficiency in Run 2 to 4 was higher than 92%, on average, where higher HRT and abnormally low SOUR of 20-30 mg-O/g-MLVSS/hr prevailed. It was noted that the ceramic membrane presented a significant soluble nutrient rejection when the microbial metabolism of biological treatment broke down.


2013 ◽  
Vol 781-784 ◽  
pp. 2138-2141
Author(s):  
Hong Jie Sun ◽  
Shao Hua Yang ◽  
Yu Bo Cui

Phosphorus removal from wastewater has always been given serious attention in sewage treatment. Eutrophication can happen if phosphorus wastewater is directly discharged into natural water and high phosphorus-contained irrigation water may lead crops beat down. The research investigated the phosphorus removal efficiency in wastewater by shell powder. The experiment results showed that the best removal effect could meet the Wastewater Treatment Plant Discharge Standard (GB18918-2002) Grade I-A in China, which can be achieved under the conditions of the dosage of shell powder solution 1 ml, pH > 11 and precipitation one to four hours at the initial phosphorus concentration of about 3 mg/L.


2016 ◽  
Vol 11 (2) ◽  
pp. 503-515 ◽  
Author(s):  
Annette Rößler ◽  
Steffen Metzger

In 2010, the Mannheim wastewater treatment plant was expanded with an adsorptive treatment stage to remove organic micropollutants (OMPs). Differences in the removal efficiencies of the OMPs investigated were determined over four years of operation by applying different powdered activated carbon (PAC) products and a constant volume-proportional dosing of 10 mg PAC/L. Possible influences on the removal efficiency are discussed here on the basis of the data obtained, exemplified for the analgesic diclofenac. The analyses show that the removal efficiency is influenced significantly by the spectral absorption coefficient (SAC) of the biologically treated wastewater at a wavelength of 254 nm (SAC254). Therefore, in order to ensure the constant treatment performance desired, the dosage of PAC should be adjusted to the measured SAC254 values. Moreover, as the SAC254 reduction correlates with the removal efficiency of OMPs, the additional determination of its reduction allows indirect control of the actual removal performance achieved. The SAC254 reduction can also be used for targeted control of the PAC dosage.


Sign in / Sign up

Export Citation Format

Share Document