Municipal wastewater treatment with pond–constructed wetland system: a case study

2005 ◽  
Vol 51 (12) ◽  
pp. 325-329 ◽  
Author(s):  
X. Wang ◽  
X. Bai ◽  
J. Qiu ◽  
B. Wang

The performance of a pond–constructed wetland system in the treatment of municipal wastewater in Kiaochow city was studied; and comparison with oxidation ponds system was conducted. In the post-constructed wetland, the removal of COD, TN and TP is 24%, 58.5% and 24.8% respectively. The treated effluent from the constructed wetland can meet the Chinese National Agricultural and Irrigation Standard. The comparison between pond–constructed wetland system and oxidation pond system shows that total nitrogen removal in a constructed wetland is better than that in an oxidation pond and the TP removal is inferior. A possible reason is the low dissolved oxygen concentration in the wetland. Constructed wetlands can restrain the growth of algae effectively, and can produce obvious ecological and economical benefits.

2006 ◽  
Vol 54 (11-12) ◽  
pp. 429-436 ◽  
Author(s):  
L. Wang ◽  
J. Peng ◽  
B. Wang ◽  
L. Yang

An eco-system consisting of integrated ponds and constructed wetland systems is employed in Dongying City, Shandong Province for the treatment and utilization of municipal wastewater with design capacity of 100,000 m3/d. The total capital cost of this system is 680 Yuan (RMB) or US$82/m3/d, or about half that of the conventional system based on activated sludge process, and the O/M cost is 0.1 Yuan (RMB) or US$ 0.012/m3, only one fifth that of conventional treatment systems. The performance of the wastewater treatment and utilization eco-system is quite good with a final effluent COD, BOD, SS, NH3-N and TP of 45–65 mg/l, 7–32 mg/l, 12–35 mg/l, 2–13 mg/l and 0.2–1.8 mg/l respectively and the annual average removals of COD, BOD, SS, NH3-N and TP are 69.1%, 78.3%, 76.4%, 62.1% and 52.9% respectively, which is much better than that of conventional pond system or constructed wetland used separately and illustrates that the artificial and integrated eco-system is more effective and efficient than the simple natural eco-system.


2008 ◽  
Vol 29 (11) ◽  
pp. 1249-1256 ◽  
Author(s):  
I. Ruiz ◽  
J. A. Álvarez ◽  
M. A. Díaz ◽  
L. Serrano ◽  
M. Soto

2003 ◽  
Vol 48 (5) ◽  
pp. 257-266 ◽  
Author(s):  
K. Boonsong ◽  
S. Piyatiratitivorakul ◽  
P. Patanaponpaiboon

The study evaluated the possibility of using mangrove plantation to treat municipal wastewater. Two types of pilot scale (100 × 150 m2) free water surface constructed wetland were set up. One system was a natural Avicennia marina dominated forest system. The other system was a newly planted system in which seedlings of Rhizophora spp., A. marina, Bruguiera cylindrica and Ceriops tagal were planted in 4 strips. Municipal wastewater was retained within the systems for 7 and 3 days, respectively. The results indicated that the average removal percentage of TSS, BOD, NO3-N, NH4-N, TN, PO4-P and TP in the newly planted system were 27.6-77.1, 43.9-53.9, 37.6-47.5, 81.1-85.9, 44.8-54.4, 24.7-76.8 and 22.6-65.3, respectively. Whereas the removal percentage of those parameters in the natural forest system were 17.1-65.9, 49.5-51.1, 44.0-60.9, 51.1-83.5, 43.4-50.4, 28.7-58.9 and 28.3-48.0, respectively. Generally, the removal percentages within the newly planted system and the natural forest system were not significantly different. However, when the removal percentages were compared with detention time, TSS, PO4-P and TP percentages removed were significantly higher in the 7-day detention time treatment. Even though the removal percentages were highly varied and temporally dependent, the overall results showed that mangrove plantation could be used as constructed wetland for municipal wastewater treatment in a similar way to the natural mangrove system.


Author(s):  
Megan Abrahams ◽  
Mujahid Aziz ◽  
Godwill Kasongo

Abstract The minimization of sludge produced by municipal wastewater treatment plants (MWWTPs) is critical as its handling accounts for approximately 50% of the total operating cost. The challenges in predicting dewatering performance can be overcome by optimizing the sludge treatment process, especially conditioning and dewatering. This study aimed to investigate sludge dewaterability at four different MWWTPs, using a gravity drainage test unit and a bench-scale press. The effect of differently treated effluent used as a solvent to mix the flocculation polymers was observed during dewatering. The membrane bioreactor (MBR) treated effluent yielded the highest filtrate volume in the lowest amount of time, with the least polymer flocculant dosage. The Box Behnken Design model fitted the data and proved a relationship between polymer dosage, cake solids concentration, and cake height during the bench-scale press tests.


2011 ◽  
Vol 356-360 ◽  
pp. 1331-1334
Author(s):  
Tao Lv ◽  
Wu Long Zhang ◽  
Xie Zhang ◽  
Feng Xue

This paper studies through project cases the treatment effect of integrated technique of anaerobic filter and constructed wetland on domestic wastewater in military camps, and the method for preventing the blocking of anaerobic filter and constructed wetland packing. The results show that its average removal rate of COD, NH4+-N, TP and SS is 83.1%, 37.5%, 49.8% and 91.5% respectively, with effluent meeting the standard of Grade II in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB18918-2002); as planned, two anaerobic filters, one for operation and the other laying fallow at a alternate period of 6 months, in combination of the design of spoil disposal, can effectively prevent the packing layer from being blocked; being preprocessed, anaerobic filter can effectively prevent the packing layer of constructed wetland from being blocked; in case of a certain difference in elevation, the integrated technique can achieve unpowered operation. Besides, it is easy to implement and manage at a low operational cost without professional technician, and can treat decentralized domestic wastewater, therefore, is suitable for camps.


Sign in / Sign up

Export Citation Format

Share Document