Application of membrane bioreactor system with full scale plant on livestock wastewater

2005 ◽  
Vol 51 (6-7) ◽  
pp. 465-471 ◽  
Author(s):  
H. Kim ◽  
H.-S. Kim ◽  
I.-T. Yeom ◽  
Y.-B. Chae

A full-scale plant of an MBR system treating livestock wastewater has shown impressive results. The Cheorwon County Environmental Authorities adopted the MBR process with UF membrane for retrofitting the old plant, which removes organic matter, nitrogen and phosphorus at a high level. According to 6 months operation data, BOD and SS removal were about 99.9% and CODMn, TN and TP removal were 92.0%, 98.3% and 82.7%, respectively. It is considered that the temperature at the bioreactor has to be controlled to be below 40 °C so as to ensure sufficient nitrification. It appeared that the MBR system is competitive with other conventional technologies for treatment of livestock wastewater such as piggery waste.

Water ◽  
2015 ◽  
Vol 7 (12) ◽  
pp. 1164-1172 ◽  
Author(s):  
So-Ryong Chae ◽  
Jin-Ho Chung ◽  
Yong-Rok Heo ◽  
Seok-Tae Kang ◽  
Sang-Min Lee ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1785
Author(s):  
Antonio Monteoliva-García ◽  
Juan Carlos Leyva-Díaz ◽  
Cristina López-López ◽  
José Manuel Poyatos ◽  
María del Mar Muñío ◽  
...  

Numerous studies have analyzed the viability of the biodegradation and removal of different compounds of emerging concern in biological systems for wastewater treatment. However, the effect on the heterotrophic biomass of organic matter removal is sometimes missed. The aim of the present research was to study the effect of the addition of a mix of three pharmaceuticals (carbamazepine, ciprofloxacin, and ibuprofen) on the behavior of the biomass in two different membrane-based biological systems treating urban wastewater. The present research studied a membrane bioreactor (MBR) pilot plant operating at a similar mixed liquor suspended solids (MLSS) concentration (about 5.5 g/L). This system works as an MBR and is combined with a moving bed biofilm reactor (MBBR-MBR) to treat real urban wastewater at 6 and 10 h of hydraulic retention time (HRT) under three different shocks of pharmaceuticals with increasing concentrations. In all cases, the organic matter removal was, in average terms, higher than about 92% of biochemical oxygen demand on the fifth day (BOD5), 79% of chemical oxygen demand (COD), and 85% of total organic carbon (TOC). Nevertheless, the removal is higher in the MBBR-MBR technology under the same HRT and the MLSS is similar. Moreover, the removal increased during the shock of pharmaceutical compounds, especially in the MBR technology. From a kinetic perspective, MBBR-MBR is more suitable for low HRT (6 h) and MBR is more effective for high HRT (10 h). This could be due to the fact that biofilm systems are less sensitive to hostile environments than the MBR systems. The removal of N-NH4+ decreased considerably when the pharmaceutical compounds mix was introduced into the system until no removal was detected in cycle 1, even when biofilm was present.


2007 ◽  
Vol 56 (5) ◽  
pp. 211-217 ◽  
Author(s):  
J. Grundestam ◽  
D. Hellström

Domestic wastewater from a new city district in Stockholm has been treated by an anaerobic membrane bioreactor (AMBR) followed by reverse osmosis (RO). The main objectives were to study the gas production, the reduction of organic matter and nutrient recovery. The AMBR was operated at 22 °C (equal to the average temperature in the influent) and a hydraulic retention time of 0.6 d. The results show that the reduction of organic matter, nitrogen and phosphorus over the AMBR was approximately 92, 9 and 9%, respectively. A stable gas production was registered throughout the evaluation period. The overall removal efficiency, i.e. including the RO, was >99% for TOC, >91% for Kj-N and about 99% for P. Adding a reverse osmosis (RO) unit to the AMBR makes it possible to produce a concentrated, nutrient rich product well suited for agricultural use. The quality of the concentrate is, in terms of nutrient concentration and heavy metal content, similar to source separated human urine, i.e. nitrogen content about 3 g N/L and <2 mg Cd/kg P. However, addition of acid is required to prevent precipitation/fouling of the RO. The total electricity use for operation for the system, including the RO-unit, is estimated to be 3–6 kWh/m3.


Sign in / Sign up

Export Citation Format

Share Document