Characterisation and biological treatment of greywater

2007 ◽  
Vol 56 (5) ◽  
pp. 193-200 ◽  
Author(s):  
L. Hernández Leal ◽  
G. Zeeman ◽  
H. Temmink ◽  
C. Buisman

Characterisation of greywater was conducted in two different greywater streams in the Netherlands (Groningen and Sneek). The concentrations of macropollutants and nutrients measured were very different in both streams; in particular the COD was 425 mg/L in Groningen's water whereas in Sneek it was 1,583 mg/L. The aerobic treatment of greywater in a fed-batch reactor led to a 90% removal of COD at different organic loading rates. Anaerobically, the removal reached 40% COD removal on average, the possible reason being the high amount of surfactants present in the influent.

1992 ◽  
Vol 25 (1) ◽  
pp. 37-44 ◽  
Author(s):  
R. Méndez ◽  
F. Omil ◽  
M. Soto ◽  
J. M. Lema

Most of the fish-canning factories are characterized by the variety of products to be processed and therefore by the production of effluents with different characteristics. When sea products are manufactured, generated wastewaters are very saline (10-20 gCl−/l) and have a high content of organic matter (10-50 g COD/l). Based on previous studies of the characteristics of different streams generated at a representative factory, which cans tuna, mussel, octopus, sardine and also produces fish meal, and once lab-scale studies showed the viability of the anaerobic treatment, a pilot plant was built in the factory. It consists of a predigester of 7 m3, a suspended sludge digester of 15 m3 and a clarifier of 3 m3. The main results can be summarized in these points: a) It is possible to obtain efficient anaerobic treatment of wastewaters with a concentration of chloride of 15 g/l. b) These wastewaters do not need the addition of nutrients, c) It is possible to treat individually or jointly all the streams generated in the factory. d) The particular results obtained with tuna- and mussel-canning effluents show that it is possible to reach 75-80% of COD removal when organic loading rates of 4 kg COD/m3.d were applied.


2020 ◽  
Vol 58 (3A) ◽  
pp. 211
Author(s):  
Quan Truong Nguyen ◽  
Quan Truong Nguyen ◽  
Ha Thi Nguyen

The objective of this study is to investigate the performance of Anaerobic Moving Bed Biofilm Reactor (MBBR) on the removal of organic matters (using COD and TSS values) in piggery wastewater using two kinds of carrier: Polyurethane (PU) and Polyethylene (PE) - Different organic loading rates (OLRs) varying from 4 to 10 gCOD/l/day with controlled temperature 37±2oC, pH 7.0-7.5 were investigated. The seeded sludge was collected at the anaerobic tank of the wastewater treatment plant of the Sabeco Beer Manufacturing Plant (Nam Tu Liem district, Hanoi) and grown in the MBBR for 15 days. For porous PU material, the COD and TSS removal efficiencies achieved 69.7 and 67.3% and 54.9 and 65.5% at OLR 4 and 6 gCOD/l/day, respectively.  Whereas for wheel shape PE material, it was found that the COD removal efficiencies were slightly higher with OLR of 6  gCOD/l/day (71%%), even with higher OLR at 10 gCOD/l.day, the COD removal efficiency didn‘t seem to significantly increase (73.3 %). For TSS removal, in comparison between PU and PE, the later found slightly better with the same OLRs of 4 and 6 gCOD/l/day, reaching 63.2 and 67 %, respectively. However, TSS removal efficiencies were found to be higher with PE carrier at higher OLR, reaching 72% at 10 gCOD/l/day.


Author(s):  
Nithya Gopinath ◽  
Madhu G. ◽  
Joseph Francis

In this study, wastewater from a centrifuge rubber latex concentration unit was experimentally treated by an up-flow anaerobic filter (UAF) at variable hydraulic detention time to investigate the COD removal efficiency and the gas production rate. The UAF reactors were made of PVC pipe with an inside diameter of 9.5 cm, 180 cm in height, with a bed volume of 12.8 L, and filled with polyethylene media. The initial COD concentration of wastewater was in the range 4620 - 10400 mg.L-1. HRTs were controlled at 20 days, with the organic loading rate varying from 2.9 to 10.5 kg.day.m-3. The findings show that the COD removal efficiency of the system was in the range of 85% to 92% for the varying organic loading rates. In addition, the specific methane production rate varied from 8.2 to 14 L of CH4 produced/g of COD destroyed/day for the different organic loading rates.


1994 ◽  
Vol 30 (12) ◽  
pp. 425-432 ◽  
Author(s):  
M. C. Veiga ◽  
R. Méndez ◽  
J. M. Lema

An anaerobic filter (AF) and a downflow stationary fixed film (DSFF) reactor were used for the treatment of a tuna processing wastewater. Start-up of the anaerobic reactors was improved using lactose as co-substrate. The AF removed up to 75% of the influent COD concentrations at organic loading rates (OLR) of 11-13 kg COD m−3 d−1, whereas the DSFF reactor removed 70% at 3 kg COD m−3 d−1. Based on these results it appears that anaerobic treatment systems are applicable to tuna processing industry wastewaters and that the AF shows a much better performance, allowing higher organic loadings and COD removal efficiencies than the DSFF reactor.


2003 ◽  
Vol 48 (6) ◽  
pp. 311-318 ◽  
Author(s):  
S. Kalyuzhnyi ◽  
M. Gladchenko ◽  
A. Epov

As a first step of treatment of landfill leachates (total COD - 1,430-3,810 mg/l, total nitrogen 90-162 mg/l), a performance of laboratory UASB reactors has been investigated under mesophilic (30°C), sub-mesophilic (20°C) and psychrophilic (10°C) conditions. Under hydraulic retention times (HRT) of around 7 h, when the average organic loading rates (OLR) were around 5 g COD/l/day, the total COD removal accounted for 81% (on the average) with the effluent concentrations close to anaerobic biodegradability limit (0.25 g COD/l) for mesophilic and sub-mesophilic regimes. The psychrophilic treatment conducted under the average HRT of 8 h and the average OLR of 4.22 g COD/l/day showed a total COD removal of 47% producing the effluents (0.75 g COD/l) more suitable for subsequent biological nitrogen removal. All three anaerobic regimes used for leachate treatment were quite efficient for elimination of heavy metals (Fe, Zn, Cu, Pb, Cd) by concomitant precipitation in the form of insoluble sulphides inside the sludge bed. The application of aerobic/anoxic biofilter as a sole polishing step for psychrophilic anaerobic effluents was acceptable for elimination of biodegradable COD and nitrogen approaching the current standards for direct discharge of treated wastewater.


1994 ◽  
Vol 29 (5-6) ◽  
pp. 381-389 ◽  
Author(s):  
W. J. B. M. Driessen ◽  
C.-O. Wasenius

In this paper combined anaerobic/aerobic treatment is illustrated by two examples at integrated pulp and paper mills with peroxide bleached TMP pulp production. The concept of combined biological treatment is to treat the more polluted effluents from the TMP pulp mill in an anaerobic reactor and subsequently to mix them with the less concentrated effluent, for treatment by an aerobic process. Extensive pilot research was done to confirm the feasibility of anaerobic treatment of peroxide bleached TMP mill effluent COD removal efficiencies of 55-60% were achieved at volumetric loading rates of up to 20 kg/m3/d. Possible toxic effects from peroxide could easily be neutralized by removal in a preacidification tank. Long term full scale experience proved that combined anaerobic aerobic treatment is an attractive and reliable method for treatment of peroxide bleached TMP mill effluent.


2004 ◽  
Vol 48 (11-12) ◽  
pp. 243-250 ◽  
Author(s):  
J.C. Orantes ◽  
S. González-Martínez

The Moving Bed Biofilm Reactor has proven to be an efficient system in wastewater treatment and has become a viable solution for small treatment plants. The main objective of this research was to analyse the performance of a moving bed reactor using low-cost local material when fed with municipal wastewater. A pilot reactor with a total volume of 900 litres was built and it was fed continuously with municipal wastewater. The operation of the system was adjusted to six different organic loading rates. The biofilm carrier was polyethylene tubing with internal diameter of 1.1 cm, cut into pieces of 1.2 cm. The tested material offered a specific surface area of 590 m2/m3. Air was provided with a fine-bubble diffuser. The main results show that the reactor performance was stable and predictable. The COD removal confidently behaves according to a general hyperbolic kinetic equation. The maximal total COD removal attained was 81%. Nitrification was observed only for organic loads with values under 5.7 gCOD/m2·d. Good adherence of the microorganisms was observed for the applied organic loading rates. After several months of operation, the material showed no signs of abrasion or deformation. The sludge production behaved linearly with the organic load reaching 979 gTSS/d with the highest organic load of 35.7 gCOD/m2·d. The amount of microorganisms attached to the carrier increased with the organic load tending to an asymptotical maximal value of 17.3 g/m2 (as dry solids). Mean cellular retention times from 2.0 to 23.1 days were determined.


Sign in / Sign up

Export Citation Format

Share Document