scholarly journals Upflow Anaerobic Filter for the Treatment of Wastewater from a Natural Rubber Latex Concentration Unit

Author(s):  
Nithya Gopinath ◽  
Madhu G. ◽  
Joseph Francis

In this study, wastewater from a centrifuge rubber latex concentration unit was experimentally treated by an up-flow anaerobic filter (UAF) at variable hydraulic detention time to investigate the COD removal efficiency and the gas production rate. The UAF reactors were made of PVC pipe with an inside diameter of 9.5 cm, 180 cm in height, with a bed volume of 12.8 L, and filled with polyethylene media. The initial COD concentration of wastewater was in the range 4620 - 10400 mg.L-1. HRTs were controlled at 20 days, with the organic loading rate varying from 2.9 to 10.5 kg.day.m-3. The findings show that the COD removal efficiency of the system was in the range of 85% to 92% for the varying organic loading rates. In addition, the specific methane production rate varied from 8.2 to 14 L of CH4 produced/g of COD destroyed/day for the different organic loading rates.

1999 ◽  
Vol 40 (1) ◽  
pp. 289-295 ◽  
Author(s):  
Gülüm Yılmazer ◽  
Orhan Yenigün

Performance of two-phase anaerobic digestion of cheese whey was investigated in a system consisting of a continuous stirred tank reactor (CSTR) as the acidogenic reactor and an upflow anaerobic filter (UFAF) as the methanogenic reactor. The acidogenic reactor was operated at various hydraulic retention times (HRTs) between 18 hours and 4 days. The results showed that an optimum HRT for the acidogenic reactor with the same organic loading rate (OLR) between 0.5-2 g COD/MLSS day was 24 hours. At this retention time the acidification rate increased up to a maximum of 50%. Volatile fatty acids (VFAs) produced in the acidogenic reactor operating at an HRT of 24 hours were 52% acetic acid, with 14% propionic, 27% butyric and 7% isovaleric acids. Operating the acidogenic reactor at this HRT, the effluent was fed to the upflow anaerobic filter. Here HRT was varied between 3-6 days for the best COD removal efficiency and biogas production. At an HRT of 4 days a 90% soluble effluent COD removal efficiency was obtained with an outmost biogas yield of 0.55 m3/kg COD removed.


Author(s):  
Zainab Rinquest ◽  
Moses Basitere ◽  
Maxwell Mewa-Ngongang ◽  
Seteno Karabo Obed Ntwampe ◽  
Mahomet Njoya

In this study, the efficiency of an anaerobic treatment system for wastewater from a South African poultry slaughterhouse was evaluated using a lab-scale static granular bed reactor (SGBR). The down-flow SGBR (2 L) was operated continuously for 138 days under mesophilic conditions (35-37 ˚C), at hydraulic retention times (HRTs) ranging from 24 to 96 h and average organic loading rates (OLRs) of 0.78 to 5.74 g COD/L.day. The SGBR achieved an average chemical oxygen demand (COD) removal efficiency of 80% and the maximum COD removal achieved was 95%, at an HRT of 24 h and average OLR of 5.74 g COD/L.day. The optimization of the SGBR, with regard to a suitable HRT and OLR, was determined using response surface methodology (RSM). The optimal SGBR performance with regard to the maximum COD removal efficiency was predicted for an OLR of 12.49 g COD/L.day and a HRT of 24 h, resulting in a 95.5% COD removal efficiency. The model R2 of 0.9638 indicated that the model is a good fit and is suitable to predict the COD removal efficiency for the SGBR.


A laboratory scale of biphasic anaerobic bioreactor was operated in a total working volume of 36.92l with 6.15l of Acidogenic and 30.77l of Methanogenic reactor for treating Pharmaceutical wastewater in a mesophilic conditions. The Organic Loading Rate for this experimental study was varied from 1.448 to 30.80Kg COD/m3 .d for Acidogenic Reactor and 0.364 to 9.435Kg COD/m3 .d for Methanogenic reactor. The maximum COD removal efficiency was attained 87.54% with OLR of 2.750Kg COD/m3 .d in Methanogenic reactor and 27.39% with OLR of 3.578 Kg COD/m3 .d Acidogenic reactors. The overall reactor reached the maximum COD removal efficiency of 83.52% with an influent COD of 2864mg/l of pharmaceutical wastewater


The present study explores the feasibility of biogas production from dairy wastewater in the UAF reactor with simultaneous wastewater treatment. The study was carried out at different hydraulic retention times (8h, 12h, 16h, 24h). Two different media such as pebble stone media and aggregate media were used as the packed media. The maximum COD removal efficiency of 91.55 % is achieved at the hydraulic retention time of 24 Hours with an organic loading rate of 1.35 kg/m3 /d for aggregate media, whereas for pebble stone media a maximum COD removal efficiency of 76.32 % is achieved. Before the start of the experiments, the COD/BOD ratio is fixed to 1.4 with initial COD and BOD of 1350 mg/L and 960 mg/L. So, from the results it is concluded that the Upflow Anaerobic Filter (UAF) Reactor can be used as a one of the best treatment methods for the diary wastewater treatment.


2013 ◽  
Vol 726-731 ◽  
pp. 2813-2817
Author(s):  
Guang Li ◽  
Jing Li ◽  
Ke Sun

The interior diversion expanded granular sludge bed was concurrently operated for 140d to study the characteristic of the granular sludge bed. The influent COD concentration varied from 2000mg/L to 22300 mg/L, hydraulic retention time was maintained constant at 24 h and the organic loading rate was changed through a change in substrate concentration. The results showed that the reactor had great COD removal efficiency. When the MLSS was 23.1g/L, the influent COD was 18890mg/L, the COD removal efficiency was 80.4%; The interior diversion EGSB could greatly improve the role of gas-dynamic, when the liquid upflow velocity was 3.55m/h, the gas production was 5.96 L/d shows higher sludge bed expansion rate than 2.77 L/d about 9.5%. During the experimental, the anaerobic sludge has the following properties: the average sludge diameter was increased from 0.41mm to 1.66mm. Observed under the scanning electronic microscopy, we found that the sludge appeared obviously granulation, the bacteria amount and species are more than seed sludge after operation of 50d. It was found that rough surface of anaerobic sludge has clear figure with being covered by mucous lamina, with visible hole or cavity on surface.


Author(s):  
Javkhlan Ariunbaatar ◽  
Robert Bair ◽  
Onur Ozcan ◽  
Harish Ravishankar ◽  
Giovanni Esposito ◽  
...  

Anaerobic digestion of food waste (FW) is typically limited to large reactors due to high hydraulic retention times (HRTs). Technologies such as anaerobic membrane reactors (AnMBRs) can perform anaerobic digestion at lower HRTs while maintaining high chemical oxygen demand (COD) removal efficiencies. This study evaluated the effect of HRT and organic loading rate (OLR) on the stability and performance of a side-stream AnMBR in treating diluted fresh food waste (FW). The reactor was fed with synthetic FW at an influent concentration of 8.24 (± 0.12) g COD/L. The OLR was increased by reducing the HRT from 20 to 1 d. The AnMBR obtained an overall removal efficiency of >97 and >98% of the influent COD and total suspended solids (TSS), respectively, throughout the course of operation. The biological process was able to convert 76% of the influent COD into biogas with 70% methane content, while the cake layer formed on the membrane gave an additional COD removal of 7%. Total ammoniacal nitrogen (TAN) and total nitrogen (TN) concentrations were found to be higher in the bioreactor than in the influent, and average overall removal efficiencies of 17.3 (± 5) and 61.5 (± 3)% of TAN and TN, respectively, were observed with respect to the bioreactor concentrations after 2 weeks. Total phosphorus (TP) had an average removal efficiency of 40.39 (± 5)% with respect to the influent. Membrane fouling was observed when the HRT was decreased from 7 to 5 d and was alleviated through backwashing. This study suggests that the side-stream AnMBR can be used to successfully reduce the typical HRT of wet anaerobic food waste (solids content 7%) digesters from 20 days to 1 day, while maintaining a high COD removal efficiency and biogas production.


1990 ◽  
Vol 22 (9) ◽  
pp. 157-166 ◽  
Author(s):  
G. K. Anderson ◽  
I. Ozturk ◽  
C. B. Saw

This paper covers the results of a pilot-plant study on the Anaerobic Fluidized-Bed Reactor (AFBR) treatment of brewery wastes. The AFBR was operated over a wide range of organic and hydraulic loading rates for a study period of more than eight months. The reactor consisted of a clear PVC column with a diameter of 165 mm and 3 m in height. Sand having a median diameter of 0.5 mm was used as the medium. The AFBR was fed with wastewaters collected from a local brewery. A COD removal efficiency of greater than 75% was observed at an organic loading rate (OLR) of 8.9 kg COD/m3 of expended bed/day for 82 days from start-up. The OLR was increased to greater than 14 kg COD/m3.d and a COD to methane conversion of 87% was achieved. Effects of OLR and COD removal efficiency on gas flowrate and on gas composition as well as concentrations of suspended solids (SS) and volatile acids (VA) were investigated. It was observed that biomass distribution along the height of the AFBR was not uniform and a strong stratification of biomass exists between the upper and lower parts of the system. The ecological structure of biomass was examined by SEM and clumps of methanogenic bacteria were identified. The Monod kinetic parameters were determined using steady-state operating data and compared to similar results given in the literature for the same waste.


1989 ◽  
Vol 21 (12) ◽  
pp. 1681-1684 ◽  
Author(s):  
I. Ozturk ◽  
G. K. Anderson ◽  
C. B. Saw

This paper presents the results of a pilot plant study using an Anaerobic Fluidized Bed Reactor (AFBR) for treatment of brewery wastes. A COD removal efficiency of greater than 75% was observed at an organic loading rate (OLR) of 9.5 kg COD/m3-day for a Deriod of 82 days from start-up. COD removal efficiency was greater than 74% at an OLR of 14.6 kg COD/m3 expanded bed (e.b)-day. A COD to methane conversion of 87% was achieved. Experimental results have suggested that the COD removal efficiency of an AFBR is only a function of COD loading, and neither the feed COD nor HRT alone significantly affect the performance of the reactor. A linear relationship was found between the specific substrate utilization rate and the specific methane production rate. It was observed that the distribution of the biomass along the height of the reactor is not uniform, and the biomass hold-up near the top of the reactor may reach concentrations of greater than 20,000 mg/l.


2008 ◽  
Vol 58 (2) ◽  
pp. 373-377
Author(s):  
Soosan J. Panicker ◽  
M. C. Philipose ◽  
Ajit Haridas

The Buoyant Filter Bio-Reactor (BFBR) is a novel and very efficient method for the treatment of complex wastewater. Sewage is a complex wastewater containing insoluble COD contributed by fat and proteins. The fat and proteins present in the domestic sewage cause operational problems and underperformance in the Upflow Anaerobic Sludge Blanket Reactor, used now for treating sewage anaerobically. The biogas yield from the BFBR is 0.36 m3/kg COD reduced and the methane content was about 70–80%. Production of methane by anaerobic digestion of organic waste had the benefit of lower energy costs for treatment and is thus environmentally beneficial to the society by providing a clean fuel from renewable feed stocks. The BFBR achieved a COD removal efficiency of 80–90% for an organic loading rate of 4.5 kg/m3/d at a hydraulic retention time of 3.25 hours. The effluent COD was less than 100 mg/l, thus saving on secondary treatment cost. No pretreatment like sedimentation was required for the influent to the BFBR. The BFBR can produce low turbidity effluent as in the activated sludge process (ASP). The land area required for the BFBR treatment plant is less when compared to ASP plant. Hence the problem of scarcity of land for the treatment plant is reduced. The total expenditure for erecting the unit was less than 50% as that of conventional ASP for the same COD removal efficiency including land cost.


2013 ◽  
Vol 67 (11) ◽  
pp. 2549-2559 ◽  
Author(s):  
S. Wang ◽  
J. Hovland ◽  
R. Bakke

The anaerobic biodegradation of reclaimer MEA (monoethanolamine) waste (MEAw) with easily degradable co-substrates was investigated in a laboratory-scale bioreactor at room temperature during a 160 d experimental run. The reactor that was constructed with three phases to facilitate attached biofilm and suspended biomass retention for degradation of the complex and challenging MEAw performed well. A feed strategy of step-wise increasing organic loading rate (OLR) by either increasing feed MEAw concentration or the hydraulic loading rate was applied. The system performance was evaluated by chemical oxygen demand (COD) removal efficiency, methane yield, MEA removal, and the accumulation of ammonia and volatile fatty acid (VFA). The total COD removal efficiency initially was 93% when the feed was mainly easily degradable co-substrate. The total removal dropped to 75% at the end when MEAw constituted 60% of the feed COD. Ion chromatography results show that the MEA and some unidentified feed chemicals were almost completely consumed. The main products of MEAw degradation were ammonia, VFAs and biogas. The ammonia nitrogen concentration reached about 2.0 g/L, which may explain the observed inhibition of acetoclastic methanogenesis leading to acetate accumulation. Methane accounted for up to 80% of the biogas generated. The highest methane yield was 0.34 L/g-COD while the yield was 0.16 L/g-COD at the highest load. This study shows that more than 80% reclaimer MEAw COD degradation with a co-substrate can be maintained in a hybrid anaerobic bioreactor operated in a wide loading range.


Sign in / Sign up

Export Citation Format

Share Document