Climate change impact on water balance of Lake Balaton

2008 ◽  
Vol 58 (9) ◽  
pp. 1865-1869 ◽  
Author(s):  
Béla Nováky

Impact of climate change on average annual water balance of Lake Balaton was examined under different climate scenarios. Increase in annual temperature by 1.5°C and decrease in annual precipitation by 5% are likely to lead to considerable decrease in water recharge of lake. If an increase in annual temperature by 2.8°C is coupled with a decrease in precipitation by 10%, Lake Balaton could turn into a closed lake without outflow.

Water ◽  
2015 ◽  
Vol 7 (12) ◽  
pp. 3565-3578 ◽  
Author(s):  
Yinqin Zhang ◽  
Bernard Engel ◽  
Laurent Ahiablame ◽  
Junmin Liu

Author(s):  
Sabrija CADRO ◽  
Otilija MISECKAITE ◽  
Teofil GAVRIC ◽  
Raimundas BAUBLYS ◽  
Jasminka ZUROVEC

2009 ◽  
Vol 65 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Tomoyoshi HIROTA ◽  
Yukiyoshi IWATA ◽  
Manabu NEMOTO ◽  
Takahiro HAMASAKI ◽  
Ryoji SAMESHIMA ◽  
...  

2021 ◽  
Vol 43 ◽  
pp. e56026
Author(s):  
Gabriela Leite Neves ◽  
Jorim Sousa das Virgens Filho ◽  
Maysa de Lima Leite ◽  
Frederico Fabio Mauad

Water is an essential natural resource that is being impacted by climate change. Thus, knowledge of future water availability conditions around the globe becomes necessary. Based on that, this study aimed to simulate future climate scenarios and evaluate the impact on water balance in southern Brazil. Daily data of rainfall and air temperature (maximum and minimum) were used. The meteorological data were collected in 28 locations over 30 years (1980-2009). For the data simulation, we used the climate data stochastic generator PGECLIMA_R. It was considered two scenarios of the fifth report of the Intergovernmental Panel on Climate Change (IPCC) and a scenario with the historical data trend. The water balance estimates were performed for the current data and the simulated data, through the methodology of Thornthwaite and Mather (1955). The moisture indexes were spatialized by the kriging method. These indexes were chosen as the parameters to represent the water conditions in different situations. The region assessed presented a high variability in water availability among locations; however, it did not present high water deficiency values, even with climate change. Overall, it was observed a reduction of moisture index in most sites and in all scenarios assessed, especially in the northern region when compared to the other regions. The second scenario of the IPCC (the worst situation) promoting higher reductions and dry conditions for the 2099 year. The impacts of climate change on water availability, identified in this study, can affect the general society, therefore, they must be considered in the planning and management of water resources, especially in the regional context


2021 ◽  
Author(s):  
Renata Romanowicz ◽  
Emilia Karamuz ◽  
Jaroslaw Napiorkowski ◽  
Tesfaye Senbeta

<div> <p>Water balance modelling is often applied in studies of climate and human impacts on water resources. Annual water balance is usually derived based on precipitation, discharge and temperature observations under an assumption of negligible changes in annual water storage in a catchment. However, that assumption might be violated during very dry or very wet years. In this study we apply groundwater level measurements to improve water balance modelling in nine sub-catchments of the River Vistula basin starting from the river sources downstream. Annual and inter-annual water balance is studied using a Budyko framework to assess actual evapotranspiration and total water supply. We apply the concept of effective precipitation to account for possible losses due to water interception by vegetation. Generalised Likelihood Uncertainty Estimation GLUE is used to account for parameter and structural model uncertainty, together with the application of eight Budyko-type equations. Seasonal water balance models show large errors for winter seasons while summer and annual water balance models follow the Budyko framework. The dryness index is much smaller in winter than in summer for all sub-catchments. The spatial variability of water balance modelling errors indicate an increasing uncertainty of model predictions with an increase in catchment size. The results show that the added information on storage changes in the catchments provided by groundwater level observations largely improves model accuracy. The results also indicate the need to model groundwater level variability depending on external factors such as precipitation and evapotranspiration and human interventions. The modelling tools developed will be used to assess future water balance in the River Vistula basin under different water management scenarios and climate variability.</p> </div>


Sign in / Sign up

Export Citation Format

Share Document