Towards a generic rainfall-runoff model for green roofs

2010 ◽  
Vol 62 (4) ◽  
pp. 898-905 ◽  
Author(s):  
H. Kasmin ◽  
V. R. Stovin ◽  
E. A. Hathway

A simple conceptual model for green roof hydrological processes is shown to reproduce monitored data, both during a storm event, and over a longer continuous simulation period. The model comprises a substrate moisture storage component and a transient storage component. Storage within the substrate represents the roof's overall stormwater retention capacity (or initial losses). Following a storm event the retention capacity is restored by evapotranspiration (ET). However, standard methods for quantifying ET do not exist. Monthly ET values are identified using four different approaches: analysis of storm event antecedent dry weather period and initial losses data; calibration of the ET parameter in a continuous simulation model; use of the Thornthwaite ET formula; and direct laboratory measurement of evaporation. There appears to be potential to adapt the Thornthwaite ET formula to provide monthly ET estimates from local temperature data. The development of a standardized laboratory test for ET will enable differences resulting from substrate characteristics to be quantified.

2020 ◽  
Author(s):  
Nutchanart Sriwongsitanon ◽  
Wasana Jandang ◽  
Thienchart Suwawong ◽  
Hubert H.~G. Savenije

Abstract. A parsimonious semi-distributed rainfall-runoff model has been developed for flow prediction. In distribution, attention is paid to both timing of runoff and heterogeneity of moisture storage capacities within sub-catchments. This model is based on the lumped FLEXL model structure, which has proven its value in a wide range of catchments. To test the value of distribution, the gauged Upper Ping catchment in Thailand has been divided into 10 sub-catchments, which can be grouped into 5 gauged sub-catchments where internal performance is evaluated. To test the effect of timing, firstly excess rainfall was calculated for each sub-catchment, using the model structure of FLEXL. The excess rainfall was then routed to its outlet using the lag time from storm to peak flow (TlagF) and the lag time of recharge from the root zone to the groundwater (TlagS), as a function of catchment size. Subsequently, the Muskingum equation was used to route sub-catchment runoff to the downstream sub-catchment, before adding to runoff of the downstream sub-catchment, with the delay time parameter of the Muskingum equation being a function of channel length. Other model parameters of this semi-distributed FLEX-SD model were kept the same as in the calibrated FLEXL model of the entire Upper Ping basin, controlled by station P.1 located at the centre of Chiang Mai Province. The outcome of FLEX-SD was compared to: 1) observations at P.1; 2) the results of the calibrated FLEXL model; and 3) the semi-distributed URBS model - another established semi-distributed rainfall-runoff model. FLEX-SD showed better performance than URBS, but a bit lower than the calibrated FLEXL model with NSE of 0.74, 0.71, and 0.76, respectively. Subsequently, at the level of the gauged internal sub-catchments, runoff estimates of FLEX-SD were compared to observations and calibrated FLEXL model results. The results demonstrate that FLEX-SD provides more accurate runoff estimates at P.1, P.67 and P.75 stations which are located along the main Ping River, compared to those provided by the lumped calibrated FLEXL model. The results were less good at 2 tributary stations (P.20 and P.21), where calibrated FLEXL output performed better, while performance was similar at one tributary station (P.4A). Overall, FLEX-SD performed better than URBS at 5 out of 6 stations except at P.21. Subsequently, the effect of distributing moisture storage capacity was tested. Since the FLEX-SD uses the same Sumax value - the maximum moisture holding capacity of the root zone - for all sub-catchments, FLEX-SD-NDII was set-up making use of the spatial distribution of the NDII (the normalized difference infrared index). The readily available NDII appears to be a good proxy for moisture stress in the root zone, particularly during dry periods. The maximum moisture holding capacity in the root zone assumed to be a function of the maximum seasonal range of NDII values. The spatial distribution of this range among sub-catchments was used to calibrate the semi-distributed FLEX-SD-NDII model. The additional constraint by the NDII improved the performance of the model and the realism of the distribution. To test how well the model represents root zone soil moisture, the performance of the FLEX-SD-NDII model was compared to time series of the soil wetness index (SWI). The correlation between the root zone storage and the daily SWI appeared to be very good, even better than the correlation with the NDII, because NDII does not provide good estimates during wet periods. The SWI, which is partly model-based, was not used for calibration, but appeared to be an appropriate index for verification.


2018 ◽  
Vol 250 ◽  
pp. 04002
Author(s):  
Hassan Abd Jalil ◽  
Harun Sobri ◽  
Ismail Tarmizi

Flood mitigation design requires accurate computation of discharge at any interest location to sustain the protection level. The design flood hydrograph generates from rainfall runoff model which used unit hydrograph method depends on the time of concentration (Tc) of the catchment. Common factors which influence Tc are the catchment properties including length, slope, soil properties and surface cover. However, when dealing with large catchment, more complex factors which also requires attention are the rainfall intensity, catchment wetness and initial water in the channel due to rain prior to the storm event. For large catchment, the travelling time which govern the Tc is more dominant in the channel rather than on the soil surface. Since water flowing in the river channel is unsteady and nonuniform, the use of Manning formula is inappropriate. This paper explains the application of hydrodynamic modelling approach to determine Tc for large catchment with long river channel. A hydrodynamic river model for Sg Relai, Kelantan with area of 460 km2 and covering 90 km distance was developed using InfoWorks ICM. Results shown that as the rain intensity increased, the travelling time will be shortened. The traveling time also reduce when initial water level in the channel increase which indicate that Tc will reduce if the catchment already received some rainfall prior to the storm event. Based on this analysis and results, the use of hydrodynamic model as part of the rainfall runoff model is significant for large catchment to handle complex factor such as wide range of rainfall intensity, spatial effect and catchment wetness.


2021 ◽  
Author(s):  
Nutchanart Sriwongsitanon ◽  
Wasana Jandang ◽  
Thienchart Suwawong ◽  
Hubert H. G. Savenije

Abstract. A parsimonious semi-distributed rainfall-runoff model has been developed for flow prediction. In distribution, attention is paid to both timing of runoff and heterogeneity of moisture storage capacities within sub-catchments. This model is based on the lumped FLEXL model structure, which has proven its value in a wide range of catchments. To test the value of distribution, the gauged Upper Ping catchment in Thailand has been divided into 32 sub-catchments, which can be grouped into 5 gauged sub-catchments where internal performance is evaluated. To test the effect of timing, firstly excess rainfall was calculated for each sub-catchment, using the model structure of FLEXL. The excess rainfall was then routed to its outlet using the lag time from storm to peak flow (TlagF) and the lag time of recharge from the root zone to the groundwater (TlagS), as a function of catchment size. Subsequently, the Muskingum equation was used to route sub-catchment runoff to the downstream sub-catchment, with the delay time parameter of the Muskingum equation being a function of channel length. Other model parameters of this semi-distributed FLEX-SD model were kept the same as in the calibrated FLEXL model of the entire Upper Ping basin, controlled by station P.1 located at the centre of Chiang Mai Province. The outcome of FLEX-SD was compared to: 1) observations at the internal stations; 2) the calibrated FLEXL model; and 3) the semi-distributed URBS model - another established semi-distributed rainfall-runoff model. FLEX-SD showed better or similar performance both during calibration and especially in validation. Subsequently, we tried to distribute the moisture storage capacity by constraining FLEX-SD on patterns of the NDII (normalized difference infrared index). The readily available NDII appears to be a good proxy for moisture stress in the root zone during dry periods. The maximum moisture holding capacity in the root zone is assumed to be a function of the maximum seasonal range of NDII values, and the annual average NDII values to construct 2 alternative models: FLEX-SD-NDIIMax-Min and FLEX-SD-NDIIAvg, respectively. The additional constraint on the moisture holding capacity by the NDII improved both model performance and the realism of the distribution. Distribution of Sumax using annual average NDII values was found to be well correlated with the percentage of evergreen forest in 31 sub-catchments. Spatial average NDII values were proved to be highly corresponded with the root zone soil moisture of the river basin, not only in the dry season but also in the water limited ecosystem. To check how well the model represents root zone soil moisture, the performance of the FLEX-SD-NDII model was compared to time series of the soil wetness index (SWI). The correlation between the root zone storage and the daily SWI appeared to be very good, even better than the correlation with the NDII, because NDII does not provide good estimates during wet periods. The SWI, which is partly model-based, was not used for calibration, but appeared to be an appropriate index for validation.


2000 ◽  
Vol 4 (1) ◽  
pp. 23-34 ◽  
Author(s):  
D. Cameron ◽  
K. Beven ◽  
J. Tawn ◽  
P. Naden

Abstract. A continuous simulation methodology, which incorporates the quantification of modelling uncertainties, is used for flood frequency estimation. The methodology utilises the rainfall-runoff model TOPMODEL within the uncertainty framework of GLUE. Long return period estimates are obtained through the coupling of a stochastic rainfall generator with TOPMODEL. Examples of applications to four gauged UK catchments are provided. A comparison with a traditional statistical approach indicates the suitability of the methodology as an alternative technique for flood frequency estimation. It is suggested that, given an appropriate choice of rainfall-runoff model and stochastic rainstorm generator, the basic methodology can be adapted for use in many other regions of the world. Keywords: Floods; Frequency; TOPMODEL; Rainfall-runoff modelling


1973 ◽  
Vol 4 (3) ◽  
pp. 147-170 ◽  
Author(s):  
STEN BERGSTRÖM ◽  
ARNE FORSMAN

This progress report outlines the main principles for the development of a simple conceptual rainfall-runoff model at the Swedish Meteorological and Hydrological Institute. The HBV-2 Model is based on lumped-parameter approximations to the physical laws governing infiltration, percolation and runoff formation. The time interval is one day. The model structure includes a soil moisture storage, an upper zone storage and a lower zone storage. A procedure for evaluating the parameter values is described. Examples of applications to several test catchments in various hydrologic settings are included.


2012 ◽  
Vol 12 (4) ◽  
pp. 1119-1133 ◽  
Author(s):  
M. Coustau ◽  
C. Bouvier ◽  
V. Borrell-Estupina ◽  
H. Jourde

Abstract. Rainfall-runoff models are crucial tools for the statistical prediction of flash floods and real-time forecasting. This paper focuses on a karstic basin in the South of France and proposes a distributed parsimonious event-based rainfall-runoff model, coherent with the poor knowledge of both evaporative and underground fluxes. The model combines a SCS runoff model and a Lag and Route routing model for each cell of a regular grid mesh. The efficiency of the model is discussed not only to satisfactorily simulate floods but also to get powerful relationships between the initial condition of the model and various predictors of the initial wetness state of the basin, such as the base flow, the Hu2 index from the Meteo-France SIM model and the piezometric levels of the aquifer. The advantage of using meteorological radar rainfall in flood modelling is also assessed. Model calibration proved to be satisfactory by using an hourly time step with Nash criterion values, ranging between 0.66 and 0.94 for eighteen of the twenty-one selected events. The radar rainfall inputs significantly improved the simulations or the assessment of the initial condition of the model for 5 events at the beginning of autumn, mostly in September–October (mean improvement of Nash is 0.09; correction in the initial condition ranges from −205 to 124 mm), but were less efficient for the events at the end of autumn. In this period, the weak vertical extension of the precipitation system and the low altitude of the 0 °C isotherm could affect the efficiency of radar measurements due to the distance between the basin and the radar (~60 km). The model initial condition S is correlated with the three tested predictors (R2 > 0.6). The interpretation of the model suggests that groundwater does not affect the first peaks of the flood, but can strongly impact subsequent peaks in the case of a multi-storm event. Because this kind of model is based on a limited amount of readily available data, it should be suitable for operational applications.


Water ◽  
2015 ◽  
Vol 7 (12) ◽  
pp. 2691-2706 ◽  
Author(s):  
Weijian Guo ◽  
Chuanhai Wang ◽  
Xianmin Zeng ◽  
Tengfei Ma ◽  
Hai Yang

2016 ◽  
Vol 74 (8) ◽  
pp. 1845-1854 ◽  
Author(s):  
Pierre-Antoine Versini ◽  
Auguste Gires ◽  
Ioulia Tchinguirinskaia ◽  
Daniel Schertzer

Currently widespread in new urban projects, green roofs have shown a positive impact on urban runoff at the building scale: decrease and slow-down of the peak discharge, and decrease of runoff volume. The present work aims to study their possible impact at the catchment scale, more compatible with stormwater management issues. For this purpose, a specific module dedicated to simulating the hydrological behaviour of a green roof has been developed in the distributed rainfall–runoff model (Multi-Hydro). It has been applied on a French urban catchment where most of the building roofs are flat and assumed to accept the implementation of a green roof. Catchment responses to several rainfall events covering a wide range of meteorological situations have been simulated. The simulation results show green roofs can significantly reduce runoff volume and the magnitude of peak discharge (up to 80%) depending on the rainfall event and initial saturation of the substrate. Additional tests have been made to assess the susceptibility of this response regarding both spatial distributions of green roofs and precipitation. It appears that the total area of greened roofs is more important than their locations. On the other hand, peak discharge reduction seems to be clearly dependent on spatial distribution of precipitation.


Sign in / Sign up

Export Citation Format

Share Document