Treatment of the azo dye direct blue 2 in a biological aerated filter under anaerobic/aerobic conditions

2010 ◽  
Vol 61 (3) ◽  
pp. 789-796 ◽  
Author(s):  
S. González-Martínez ◽  
S. Piña-Mondragón ◽  
Ó. González-Barceló

The main objective of this research was to determine the feasibility to treat the azo dye direct blue 2 together with municipal wastewater in a biological aerated filter (BAF) using lava stones as support of the microorganisms and under combined anaerobic/aerobic conditions. A 3 m high pilot biological aerated filter was fed with municipal wastewater and, after several weeks, the azo dye direct blue 2 was added to the wastewater to reach a final concentration of 50 mg/L (34 mgCOD/L). Under continuous operation, two strategies were tested: Alternating aeration (12 h anaerobic and 12 h aerobic) and combined aeration (the lower part of the filter anaerobic and the upper part aerobic). The results indicate that municipal wastewater acted as a good electron donor resulting in satisfactory COD and dye removal rates. Better dye removal (61%) was obtained with combined aeration than with alternating aeration (45%). After beginning the azo dye addition, the COD removal rates decreased from 87 to 81% for both alternating and combined aeration procedures. The average ammonia nitrogen removal, without the addition of the dye, was 73% and increased to 90% shortly after beginning the dye addition, then it decreased to 81% during the combined aeration period. Excellent nitrification was observed in the upper aerobic part of the filter. For the combined aeration phase, the conditions change from anaerobic to aerobic does not seem to affect the behavior of the COD and TSS curves.


2019 ◽  
Vol 25 (4) ◽  
pp. 554-560 ◽  
Author(s):  
Jin-Su Kim ◽  
Ji-Young Lee ◽  
Seung-Kyu Choi ◽  
Qian Zhu ◽  
Sang-Ill Lee

This study focuses on nitrification through a biological aerated filter (BAF) that is filled with a zeolite medium at low concentrations of ammonia. The zeolite medium consists of natural zeolite powder. The BAF is operated under two types of media, which are a ball-type zeolite medium and expanded poly propylene (EPP) medium. Nitrification occurred in the zeolite BAF (ZBAF) when the influent concentration of ammonia nitrogen was 3 mg L-1, but the BAF that was filled with an EPP medium did not experience nitrification. The ammonia nitrogen removal efficiency of ZBAF was 63.38% and the average nitrate nitrogen concentration was 1.746 mg/L. The ZBAF was tested again after a comparison experiment to treat pond water, and municipal wastewater mixed pond water. The ZBAF showed remarkable ammonia-nitrogen treatment at low concentration and low temperature. During this period, the average ammonia nitrogen removal efficiency was 64.56%. Especially, when water temperature decreased to 4.7℃, ammonia nitrogen removal efficiency remained 79%. On the other hand, the chemical-oxygen demand (COD) and phosphorus-removal trends were different. The COD and phosphorus did not show as efficient treatment as the ammonia-nitrogen treatment.



2008 ◽  
Vol 3 (3) ◽  
Author(s):  
O. González-Barceló ◽  
S. González-Martínez

Biological aerated filtration is a viable option for small municipal wastewater treatment plants. A low cost filter media was obtained by triturating volcanic rock. An apparent porosity of 46 % and a specific surface area of 395 m2/m3·d were obtained once the filter was packed by using a grain size of 8.2 mm. The performance of the system, operated as a biological filter, was evaluated under an average organic load of 2.6±0.4 kgCODT/m3·d (6.7±1.1 gCODT/m2·d) without primary and secondary settling. The average CODT decreased from 220 mg/l in the influent to 88 mg/l in the effluent and the CODD was decreased from 148 mg/l in the influent to 50 mg/l in the effluent. The filter media, in combination with the biofilm, allowed a 75 % TSS removal. The ammonia nitrogen decreased from 51 mg/l in the influent to 33 mg/l in the effluent. The maximum flux coefficients of 9.3gCODdissolved/m2·d and 2.9gNH4-N/m2·d at the biofilm surface were used to simulate, with the Michaelis-Menten model, the profiles of dissolved COD, ammonium and nitrates through the aerated filter. It was possible to conclude that the backwashing procedure removed the excess biomass and was responsible for a homogeneous distribution of heterotrophic and autotrophic microorganisms along the filter depth.







2013 ◽  
Vol 726-731 ◽  
pp. 1940-1944 ◽  
Author(s):  
Liang Shen ◽  
Han Xiao ◽  
Wan Qiu Yang ◽  
De Ren Miao ◽  
Xiao Ming Li

Using coagulation and sedimentation process in the advanced treatment of urban secondary effluent which can be recycled to circulating cooling water system in power plant is only perform well on CODCrand turbidity removal. But the concentrations of organic matter and NH3in effluent can not meet the requirements of circulating cooling water. Therefore, in this study, the feasibility of biological aerated filter (BAF) as a pretreatment enhancing coagulation and sedimentation process was discussed. Achieved by controlling the two operating modes: (1) secondary effluentcoagulation and sedimentationeffluent; (2) secondary effluent BAFcoagulation and sedimentation effluent.The results show that the BAF pretreatment removes ammonia nitrogen effectively, and the turbidity and CODCrof effluent of BAF-coagulation sedimentation process is much lower than individual coagulation and sedimentation process. The final effluent qualities meet the requirements of circulating cooling water system in power plant.



2016 ◽  
Vol 74 (7) ◽  
pp. 1553-1560
Author(s):  
Kun Zhong ◽  
Yi-yong Luo ◽  
Zheng-song Wu ◽  
Qiang He ◽  
Xue-bin Hu ◽  
...  

A vertical flow constructed wetland was combined with a biological aerated filter to develop an ecological filter, and to obtain the optimal operating parameters: The hydraulic loading was 1.55 m3/(m2·d), carbon–nitrogen ratio was 10, and gas–water ratio was 6. The experimental results demonstrated considerable removal efficiency of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) in wastewater by the ecological filter, with average removal rates of 83.79%, 93.10%, 52.90%, and 79.07%, respectively. Concentration of NH4+-N after treatment met the level-A discharge standard of GB18918-2002. Compared with non-plant filter, the ecological filter improved average removal efficiency of COD, NH4+-N, TN, and TP by 13.03%, 25.30%, 14.80%, and 2.32%, respectively: thus, plants significantly contribute to the removal of organic pollutants and nitrogen. Through microporous aeration and O2 secretion of plants, the ecological filter formed an aerobic–anaerobic–aerobic alternating environment; thus aerobic and anaerobic microbes were active and effectively removed organic pollutants. Meanwhile, nitrogen and phosphorus were directly assimilated by plants and as nutrients of microorganisms. Meanwhile, pollutants were removed through nitrification, denitrification, filtration, adsorption, and interception by the filler. High removal rates of pollutants on the ecological filter proved that it is an effective wastewater-treatment technology for decentralized wastewater of mountainous towns.



2016 ◽  
Vol 73 (8) ◽  
pp. 2031-2038 ◽  
Author(s):  
L. Y. Fu ◽  
C. Y. Wu ◽  
Y. X. Zhou ◽  
J. E. Zuo ◽  
Y. Ding

In this study, petrochemical secondary effluent was treated by a 55 cm diameter pilot-scale biological aerated filter (BAF) with a media depth of 220 cm. Volcanic rock grains were filled as the BAF media. Median removal efficiency of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) was 29.35 and 57.98%, respectively. Moreover, the removal profile of the COD, NH3-N, total nitrogen and total organic carbon demonstrated that the filter height of 140 cm made up to 90% of the total removal efficiency of the final effluent. By gas chromatography–mass spectrometry, removal efficiencies of 2-chloromethyl-1,3-dioxolane, and benzonitrile, indene and naphthalene were obtained, ranging from 30.12 to 63.01%. The biomass and microbial activity of the microorganisms on the filter media were in general reduced with increasing filter height, which is consistent with the removal profile of the contaminants. The detected genera Defluviicoccus, Betaproteobacteria_unclassified and the Blastocatella constituted 1.86–6.75% of the identified gene, enhancing the COD and nitrogen removal in BAF for treating petrochemical secondary effluent.





2014 ◽  
Vol 15 (2) ◽  
pp. 348-355
Author(s):  
Hui Feng ◽  
Fu-yi Cui ◽  
Yi-zhong Xie ◽  
Yan Wei ◽  
Zhi-wei Zhao

The enhancement effect of polyethylene (PE) surfaces modified with poly(lactic acid) (PLA) on formation of nitrifying biofilms in biological aerated filter (BAF) was investigated in this study. X-ray photoelectron spectroscopy, scanning electron microscope, and protein absorption analysis revealed that modified PE surfaces produced active groups, including carboxyl (O═C─O), hydroxyl (C─OH), and carbonyl (C═O), increased surface roughness, and enhanced the adsorption of both the bovine serum albumin and fibrinogen. During the startup period of 33 days, the average removal rates of ammonia nitrogen (NH3-H) were 68 and 72% before and after modification which were 36 and 43% for total nitrogen, 47 and 45% for total organic carbon. The results of denaturing gradient gel electrophoresis experiments demonstrated that modified carriers adsorbed and gathered more species of bacteria on surfaces. Thus, surface modification of PE suspended carrier by PLA improved the efficiency of reactor startup for drinking water treatment.



Sign in / Sign up

Export Citation Format

Share Document