Mullite ceramic membranes for industrial oily wastewater treatment: experimental and neural network modeling

2011 ◽  
Vol 64 (3) ◽  
pp. 670-676 ◽  
Author(s):  
H. Shokrkar ◽  
A. Salahi ◽  
N. Kasiri ◽  
T. Mohammadi

In this paper, results of an experimental and modeling of separation of oil from industrial oily wastewaters (desalter unit effluent of Seraje, Ghom gas wells, Iran) with mullite ceramic membranes are presented. Mullite microfiltration symmetric membranes were synthesized from kaolin clay and α-alumina powder. The results show that the mullite ceramic membrane has a high total organic carbon and chemical oxygen demand rejection (94 and 89%, respectively), a low fouling resistance (30%) and a high final permeation flux (75 L/m2 h). Also, an artificial neural network, a predictive tool for tracking the inputs and outputs of a non-linear problem, is used to model the permeation flux decline during microfiltration of oily wastewater. The aim was to predict the permeation flux as a function of feed temperature, trans-membrane pressure, cross-flow velocity, oil concentration and filtration time, using a feed-forward neural network. Finally the structure of hidden layers and nodes in each layer with minimum error were reported leading to a 4–15 structure which demonstrated good agreement with the experimental measurements with an average error of less than 2%.

Desalination ◽  
2008 ◽  
Vol 228 (1-3) ◽  
pp. 175-182 ◽  
Author(s):  
Nidal Hilal ◽  
Oluwaseun O. Ogunbiyi ◽  
Mohammed Al-Abri

2018 ◽  
Vol 43 (3) ◽  
pp. 245-253 ◽  
Author(s):  
Mashallah Rezakazemi ◽  
Saeed Shirazian

AbstractNanostructured ceramic membranes have shown considerable separation performance. In this work, an analytical model is developed to evaluate the separation performance of porous ceramic membranes in gas separation applications. The model takes into account three layers, i. e., (1) active layer, (2) interlayer, and (3) support layer. For estimation of sorption at the interface of feed stream and membrane, the partition coefficient model was used and the unsteady-state conservation of mass equation coupled to molecular models of the diffusivity coefficient was used to predict the permeation of penetrant hydrogen gas through a ceramic membrane. It was observed that the model can be readily applied to other systems of interest as a predictive tool.


2012 ◽  
Vol 37 (1-3) ◽  
pp. 21-30 ◽  
Author(s):  
Mohsen Abbasi ◽  
Abdolhamid Salahi ◽  
Mojtaba Mirfendereski ◽  
Toraj Mohammadi ◽  
Fatemeh Rekabdar ◽  
...  

Desalination ◽  
2010 ◽  
Vol 252 (1-3) ◽  
pp. 113-119 ◽  
Author(s):  
Mohsen Abbasi ◽  
Abdolhamid Salahi ◽  
Mojtaba Mirfendereski ◽  
Toraj Mohammadi ◽  
Afshin Pak

Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 888
Author(s):  
Mingliang Chen ◽  
Sebastiaan G. J. Heijman ◽  
Luuk C. Rietveld

Membrane filtration is considered to be one of the most promising methods for oily wastewater treatment. Because of their hydrophilic surface, ceramic membranes show less fouling compared with their polymeric counterparts. Membrane fouling, however, is an inevitable phenomenon in the filtration process, leading to higher energy consumption and a shorter lifetime of the membrane. It is therefore important to improve the fouling resistance of the ceramic membranes in oily wastewater treatment. In this review, we first focus on the various methods used for ceramic membrane modification, aiming for application in oily wastewater. Then, the performance of the modified ceramic membranes is discussed and compared. We found that, besides the traditional sol-gel and dip-coating methods, atomic layer deposition is promising for ceramic membrane modification in terms of the control of layer thickness, and pore size tuning. Enhanced surface hydrophilicity and surface charge are two of the most used strategies to improve the performance of ceramic membranes for oily wastewater treatment. Nano-sized metal oxides such as TiO2, ZrO2 and Fe2O3 and graphene oxide are considered to be the potential candidates for ceramic membrane modification for flux enhancement and fouling alleviation. The passive antifouling ceramic membranes, e.g., photocatalytic and electrified ceramic membranes, have shown some potential in fouling control, oil rejection and flux enhancement, but have their limitations.


2018 ◽  
Vol 106 (6) ◽  
pp. 603 ◽  
Author(s):  
Bendaoud Mebarek ◽  
Mourad Keddam

In this paper, we develop a boronizing process simulation model based on fuzzy neural network (FNN) approach for estimating the thickness of the FeB and Fe2B layers. The model represents a synthesis of two artificial intelligence techniques; the fuzzy logic and the neural network. Characteristics of the fuzzy neural network approach for the modelling of boronizing process are presented in this study. In order to validate the results of our calculation model, we have used the learning base of experimental data of the powder-pack boronizing of Fe-15Cr alloy in the temperature range from 800 to 1050 °C and for a treatment time ranging from 0.5 to 12 h. The obtained results show that it is possible to estimate the influence of different process parameters. Comparing the results obtained by the artificial neural network to experimental data, the average error generated from the fuzzy neural network was 3% for the FeB layer and 3.5% for the Fe2B layer. The results obtained from the fuzzy neural network approach are in agreement with the experimental data. Finally, the utilization of fuzzy neural network approach is well adapted for the boronizing kinetics of Fe-15Cr alloy.


Sign in / Sign up

Export Citation Format

Share Document