Comparison of the catabolic activity and catabolic profiles of rhizospheric, gravel-associated and interstitial microbial communities in treatment wetlands

2013 ◽  
Vol 67 (4) ◽  
pp. 886-893 ◽  
Author(s):  
Kela P. Weber ◽  
Raymond L. Legge

Microbial communities play a critical role in degrading organic contaminants in treatment wetlands; however, an understanding of the different roles played by rhizospheric, gravel-associated and interstitial microbial communities is deficient due to a lack of data directly comparing these microbial communities. Community level physiological profiling (CLPP) was used to compare the catabolic capabilities of rhizospheric, gravel-associated and interstitial microbial communities in vertical-flow planted and unplanted wetland mesocosms. Wetland mesocosms were decommissioned to gather microbial community samples associated with the roots and gravel bed media taken from the top (10 cm depth), middle (30 cm depth) and bottom (60 cm depth). The catabolic capabilities of the rhizospheric microbial communities were seen to be much greater than those of the gravel-associated communities. A decrease in catabolic capability was seen with increasing depth, suggesting that communities near the surface play a larger role in the degradation of carbon-based compounds. A general difference in catabolic profiles based on plant presence/absence was observed for the interstitial water and all gravel-associated samples at all depths, suggesting that the presence of roots within part of the mesocosm not only has a localized effect on the attached microbial population, but also on gravel-associated microbial communities throughout the mesocosms.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anthony Horner ◽  
Samuel S. Browett ◽  
Rachael E. Antwis

AbstractModern agricultural practices have vastly increased crop production but negatively affected soil health. As such, there is a call to develop sustainable, ecologically-viable approaches to food production. Mixed-cropping of plant varieties can increase yields, although impacts on plant-associated microbial communities are unclear, despite their critical role in plant health and broader ecosystem function. We investigated how mixed-cropping between two field pea (Pisum sativum L.) varieties (Winfreda and Ambassador) influenced root-associated microbial communities and yield. The two varieties supported significantly different fungal and bacterial communities when grown as mono-crops. Mixed-cropping caused changes in microbial communities but with differences between varieties. Root bacterial communities of Winfreda remained stable in response to mixed-cropping, whereas those of Ambassador became more similar to Winfreda. Conversely, root fungal communities of Ambassador remained stable under mixed-cropping, and those of Winfreda shifted towards the composition of Ambassador. Microbial co-occurrence networks of both varieties were stronger and larger under mixed-cropping, which may improve stability and resilience in agricultural soils. Both varieties produced slightly higher yields under mixed-cropping, although overall Ambassador plants produced higher yields than Winfreda plants. Our results suggest that variety diversification may increase yield and promote microbial interactions.


2018 ◽  
Vol 642 ◽  
pp. 208-215 ◽  
Author(s):  
R. Lombard-Latune ◽  
L. Pelus ◽  
N. Fina ◽  
F. L'Etang ◽  
B. Le Guennec ◽  
...  

2020 ◽  
Vol 713 ◽  
pp. 136510 ◽  
Author(s):  
German Dario Martinez-Carvajal ◽  
Laurent Oxarango ◽  
Rémi Clément ◽  
Pascal Molle ◽  
Nicolas Forquet

2020 ◽  
Vol 742 ◽  
pp. 140608
Author(s):  
Camila Maria Trein ◽  
Camille Banc ◽  
Kevin Maciejewski ◽  
Amanda de Moraes Motta ◽  
Rémy Gourdon ◽  
...  

2020 ◽  
Vol 9 (11) ◽  
pp. 3621
Author(s):  
Monica Di Paola ◽  
Viola Seravalli ◽  
Sara Paccosi ◽  
Carlotta Linari ◽  
Astrid Parenti ◽  
...  

The vaginal microbiota plays a critical role in pregnancy. Bacteria from Lactobacillus spp. are thought to maintain immune homeostasis and modulate the inflammatory responses against pathogens implicated in cervical shortening, one of the risk factors for spontaneous preterm birth. We studied vaginal microbiota in 46 pregnant women of predominantly Caucasian ethnicity diagnosed with short cervix (<25 mm), and identified microbial communities associated with extreme cervical shortening (≤10 mm). Vaginal microbiota was defined by 16S rRNA gene sequencing and clustered into community state types (CSTs), based on dominance or depletion of Lactobacillus spp. No correlation between CSTs distribution and maternal age or gestational age was revealed. CST-IV, dominated by aerobic and anaerobic bacteria different than Lactobacilli, was associated with extreme cervical shortening (odds ratio (OR) = 15.0, 95% confidence interval (CI) = 1.56–14.21; p = 0.019). CST-III (L. iners-dominated) was also associated with extreme cervical shortening (OR = 6.4, 95% CI = 1.32–31.03; p = 0.02). Gestational diabetes mellitus (GDM) was diagnosed in 10/46 women. Bacterial richness was significantly higher in women experiencing this metabolic disorder, but no association with cervical shortening was revealed by statistical analysis. Our study confirms that Lactobacillus-depleted microbiota is significantly associated with an extremely short cervix in women of predominantly Caucasian ethnicity, and also suggests an association between L. iners-dominated microbiota (CST III) and cervical shortening.


2019 ◽  
Vol 7 (12) ◽  
pp. 598 ◽  
Author(s):  
Anyi Hu ◽  
Hongjie Wang ◽  
Meixian Cao ◽  
Azhar Rashid ◽  
Mingfeng Li ◽  
...  

Coastal sands harbor diverse microbial assemblages that play a critical role in the biogeochemical cycling of beach ecosystems. However, little is known about the relative importance of the different ecological processes underlying the assembly of communities of sand microbiota. Here, we employed 16S rDNA amplicon sequencing to investigate the sand microbiota of two coastal beaches, in southern China. The results showed that sand microbial assemblages at intertidal and supratidal zones exhibited contrasting compositions that can be attributed to environmental filtering by electric conductivity. A consistent pattern of habitat generalists and specialists of sand microbiota was observed among different beach zones. Null and neutral model analyses indicated that the environmental filtering was mainly responsible for supratidal microbial communities, while the neutral processes could partially influence the assembly of intertidal communities. Moreover, environmental filtering was found to shape the habitat specialists, while random dispersal played a major role in shaping generalists. The neutral model analysis revealed that the habitat generalists exceeding the neutral prediction harbored a relatively higher proportion of microbial taxa than the specialist counterparts. An opposite pattern was observed for taxa falling below the neutral prediction. Collectively, these findings offer a novel insight into the assembly mechanisms of coastal sand microbiota.


Sign in / Sign up

Export Citation Format

Share Document