scholarly journals Opportunities for microbial electrochemistry in municipal wastewater treatment – an overview

2014 ◽  
Vol 69 (7) ◽  
pp. 1359-1372 ◽  
Author(s):  
Oskar Modin ◽  
David J. I. Gustavsson

Microbial bioelectrochemical systems (BESs) utilize living microorganisms to drive oxidation and reduction reactions at solid electrodes. BESs could potentially be used at municipal wastewater treatment plants (WWTPs) to recover the energy content of organic matter, to produce chemicals useful at the site, or to monitor and control biological treatment processes. In this paper, we review bioelectrochemical technologies that could be applied for municipal wastewater treatment. Sjölunda WWTP in Malmö, Sweden, is used as an example to illustrate how the different technologies potentially could be integrated into an existing treatment plant and the impact they could have on the plant's utilization of energy and chemicals.

2012 ◽  
Vol 2 (1) ◽  
pp. 3 ◽  
Author(s):  
Christian Gagnon ◽  
André Lajeunesse

Pharmaceutical substances represent a risk for aquatic environments and their potential impacts on the receiving environment are poorly understood. Municipal effluents are important sources of contaminants including common pharmaceuticals like anti-inflammatory and anti-convulsive substances. The removal of pharmaceuticals, particularly those highly soluble can represent a great challenge to conventional wastewater treatment processes. Hydrophilic drugs (<em>e.g.</em> acidic drugs) have properties that can highly influence removal efficiencies of treatment plants. The performance of different wastewater treatment processes for the removal of specific pharmaceutical products that are expected to be poorly removed was investigated. The obtained results were compared to inherent properties of the studied substances. Clofibric acid, carbamazepine, diclofenac, ibuprofen and naproxen were largely found in physicochemical primary-treated effluents at concentrations ranging from 77 to 2384 ng/L. This treatment type showed removal yields lower than 30%. On the other hand, biological treatments with activated sludge under aerobic conditions resulted in much better removal rates (&gt;50% for 5 of the 8 studied substances). Interestingly, this latter type of process showed evidence of selectivity with respect to the size (R2=0.7388), solubility (R2=0.6812), and partitioning (R2=0.9999) of the removed substances; the smallest and least sorbed substances seemed to be removed at better rates, while the persistent carbamazepine (392 ng/L) and diclofenac (66 ng/L) were poorly removed (&lt;10%) after biological treatment. In the case of treatment by aerated lagoons, the most abundant substances were the highly soluble hydroxy-ibuprofen (350-3321 ng/L), followed by naproxen (42-413 n/L) and carbamazepine (254-386 ng/L). In order to assess the impacts of all these contaminants of various properties on the environment and human health, we need to better understand the chemical and physical transformations occurring at the treatment plant and in the receiving waters.


2018 ◽  
Vol 4 (12) ◽  
pp. 1988-1996 ◽  
Author(s):  
Yan He ◽  
Yishuang Zhu ◽  
Jinghan Chen ◽  
Minsheng Huang ◽  
Guohua Wang ◽  
...  

The tense deficiency of available land resources is becoming one of the bottlenecks in dealing with wastewater treatment plant (WWTP) management issues.


2020 ◽  
Vol 1 ◽  
Author(s):  
Kevin de Santiago ◽  
Terence A. Palmer ◽  
Michael S. Wetz ◽  
Jennifer Beseres Pollack

AbstractThe influence of nutrient loading and other anthropogenic stressors is thought to be greater in low inflow, microtidal estuaries, where there is limited water exchange. This 11-month study compared spatial changes in macrofaunal communities adjacent to regions that varied in land cover in Oso Bay, Texas, an estuarine secondary bay with inflow dominated by hypersaline discharge, in addition to discharge from multiple municipal wastewater treatment plants. Macrofauna communities changed in composition with distance away from a wastewater treatment plant in Oso Bay, with the western region of the bay containing different communities than the head and the inlet of the bay. Ostracods were numerically dominant close to the wastewater discharge point. Macrobenthic community composition is most highly correlated with silicate concentrations in the water column. Silicate is negatively correlated with salinity and dissolved oxygen, and positively correlated with nutrients within the bay. Results are relevant for environmental management purposes by demonstrating that point-source discharges can still have ecological effects in hydrologically altered estuaries.


2018 ◽  
Vol 45 ◽  
pp. 00113 ◽  
Author(s):  
Józef Trela ◽  
Elżbieta Płaza

The article presents new trends in the treatment of municipal wastewater in Sweden caused by the constantly increasing requirements for discharging pollutants into Baltic Sea waters. The development of new technologies for nitrogen removal, pharmaceutical residues removal and the possibility of using membrane processes in wastewater treatment is presented. The state of research on innovative wastewater treatment processes at the level of pilot-scale tests and their implementation in full technical scale has been described. These technologies can allow the application of new, economical and environmentally friendly wastewater treatment processes based on biological, chemical and physical methods. Swedish wastewater treatment plants are preparing to meet the new conditions required for discharged wastewater with a value of 6 mg N/L for total nitrogen and 0.2 mg P/L for total phosphorus. This requires large investments in the reconstruction of municipal wastewater treatment plants and the introduction of new treatment processes.


2010 ◽  
Vol 61 (5) ◽  
pp. 1349-1354
Author(s):  
H. Saveyn ◽  
D. Curvers ◽  
J. Pelicaen ◽  
J. Cauwenberghs ◽  
C. Thoeye ◽  
...  

The present paper outlines the impact of hydrolysis occurring in DMAEA-Q type polymers in the dewatering facilities of municipal wastewater treatment plants. Laboratory studies of polymer hydrolysis kinetics were combined with full-scale dewatering experiments to investigate the influence of polymer charge loss on polymer consumption and cake dry matter yields. The results indicate that prolonged polymer storage leads to important charge loss effects, resulting in increased dosage requirements for satisfactory dewatering performance. Fortunately, charge loss effects due to hydrolysis upon polymer storage could be minimized by acidifying the polymer batches. Furthermore, cake dry matter contents obtained from dewatering tests with freshly prepared polymer batches suggested that acidification of the polymer batch also had a beneficial effect on the conditioning efficiency of the polymer solution. The results from this study thus stress the influence of pH on the shelf life and efficiency of polymer solutions in wastewater treatment plants. As a consequence, polymer preparation and storage procedures should be adapted to the polymer consumption pattern and pH of the medium used for polymer batch production.


Sign in / Sign up

Export Citation Format

Share Document