Anaerobic/aerobic treatment of greywater via UASB and MBR for unrestricted reuse

2014 ◽  
Vol 71 (4) ◽  
pp. 630-637 ◽  
Author(s):  
Hussein I. Abdel-Shafy ◽  
Ahmed Makki Al-Sulaiman ◽  
Mona S. M. Mansour

The aim of the present study was to investigate the efficiency of integrated up-flow anaerobic sludge blanket (UASB) as anaerobic system followed by membrane bioreactor (MBR) as aerobic system for the treatment of greywater for unrestricted reuse. Pilot-scale UASB and MBR units were installed and operated in the NRC, Egypt. Real raw greywater was subjected to UASB and the effluent was further treated with microfiltration MBR. The necessary trans-membrane pressure difference is applied by the water head above the membrane (gravity flow) without any energy input. The average characteristics of the raw greywater were 95, 392, 298, 10.45, 0.4, 118.5 and 28 mg/L for total suspended solids (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total phosphates, nitrates, oil and grease, and total Kjeldahl nitrogen (TKN), respectively. The pH was 6.71. The UASB treatment efficiency reached 19.3, 57.8, 67.5 and 83.7% for TSS, COD, BOD5 and oil and grease, respectively. When the UASB effluent was further treated with MBR, the overall removal rate achieved 97.7, 97.8, 97.4 and 95.8% for the same parameters successively. The characteristics of the final effluent reached 2.5, 8.5, 6.1, 0.95, 4.6 and 2.3 mg/L for TSS, COD, BOD, phosphates, oil and grease and TKN, respectively. This final treated effluent could cope with the unrestricted water reuse of local Egyptian guidelines.

2009 ◽  
Vol 59 (11) ◽  
pp. 2265-2272 ◽  
Author(s):  
S. Satyanarayan ◽  
A. Karambe ◽  
A. P. Vanerkar

Herbal pharmaceutical industry has grown tremendously in the last few decades. As such, literature on the treatment of this wastewater is scarce. Water pollution control problems in the developing countries need to be solved through application of cost effective aerobic/anaerobic biological systems. One such system—the upflow anaerobic sludge blanket (UASB) process which is known to be cost effective and where by-product recovery was also feasible was applied for treatment of a high strength wastewater for a period of six months in a pilot scale upflow anaerobic sludge blanket (UASB) reactor with a capacity of 27.44 m3. Studies were carried out at various organic loading rates varying between 6.26 and 10.33 kg COD/m3/day and hydraulic retention time (HRT) fluctuating between 33 and 43 hours. This resulted in chemical oxygen demand (COD), biochemical oxygen demand (BOD) and suspended solids (SS) removal in the range of 86.2%–91.6%, 90.0%–95.2% and 62.6%–68.0% respectively. The biogas production varied between 0.32–0.47 m3/kg COD added. Sludge from different heights of UASB reactor was collected and subjected to scanning electron microscopy (SEM). The results indicated good granulation with efficient UASB reactor performance.


1999 ◽  
Vol 40 (8) ◽  
pp. 237-244 ◽  
Author(s):  
A. Puñal ◽  
A. Lorenzo ◽  
E. Roca ◽  
C. Hernández ◽  
J. M. Lema

The operation of an industrial pilot scale treating wastewater from a fibreboard-processing factory was monitored by an advanced system. The plant, an anaerobic hybrid UASB-UAF bioreactor (Upflow Anaerobic Sludge Blanket-Upflow Anaerobic Filter), was equipped with the following measurement devices: biogas flow-meter, feed and recycling flow-meters, thermometer Pt-100, biogas analyser (CH4 and CO), Hydrogen analyser and pH-meter. Other parameters such as alkalinity, Chemical Oxygen Demand (COD) and Volatile Fatty Acids (VFA) were determined off-line. All the on-line sensor measurements were monitored, through a PLC (Programmable Logic Controller), which indicated about the plant failures, including the measuring devices (giving messages or alarms to the operator) and provided the set points for the PLC. The pilot plant was started-up at an initial Organic Loading Rate (OLR) of 2 kg COD/m3.d (Hydraulic Retention Time (HRT) 5 days and 10 kg COD/m3), this value increasing up to 10 kg COD/m3.d by decreasing HRT to 1 day. The behaviour of the bioreactor during start-up and steady state operation was studied. After that, an experiment was performed to analyse the response of the bioreactor to an organic overload. From the results, different variables were evaluated as useful control parameters. Monitoring of CO concentration did not permit the prediction of destabilisation of the bioreactor. However, H2 concentration is quite a sensitive variable, which must be analysed together with other parameters such as methane composition or gas flow-rate. Besides, alkalinity is easy to measure and provides immediate information about the state of the plant, as was shown through the off-line measurements.


2011 ◽  
Vol 64 (10) ◽  
pp. 1959-1966 ◽  
Author(s):  
K. Syutsubo ◽  
W. Yoochatchaval ◽  
I. Tsushima ◽  
N. Araki ◽  
K. Kubota ◽  
...  

In this study, continuous operation of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor for sewage treatment was conducted for 630 days to investigate the physical and microbial characteristics of the retained sludge. The UASB reactor with a working volume of 20.2 m3 was operated at ambient temperature (16–29 °C) and seeded with digested sludge. After 180 days of operation, when the sewage temperature had dropped to 20 °C or lower, the removal efficiency of both total suspended solids (TSS) and total biochemical oxygen demand (BOD) deteriorated due to washout of retained sludge. At low temperature, the cellulose concentration of the UASB sludge increased owing to the rate limitation of the hydrolytic reaction of suspended solids in the sewage. However, after an improvement in sludge retention (settleability and concentration) in the UASB reactor, the process performance stabilized and gave sufficient results (68% of TSS removal, 75% of total BOD removal) at an hydraulic retention time (HRT) of 9.7 h. The methanogenic activity of the retained sludge significantly increased after day 246 due to the accumulation of Methanosaeta and Methanobacterium following the improvement in sludge retention in the UASB reactor. Acid-forming bacteria from phylum Bacteroidetes were detected at high frequency; thus, these bacteria may have an important role in suspended solids degradation.


2016 ◽  
Vol 73 (8) ◽  
pp. 1777-1784 ◽  
Author(s):  
D. Tanikawa ◽  
K. Syutsubo ◽  
M. Hatamoto ◽  
M. Fukuda ◽  
M. Takahashi ◽  
...  

A pilot-scale experiment of natural rubber processing wastewater treatment was conducted using a combination system consisting of a two-stage up-flow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) reactor for more than 10 months. The system achieved a chemical oxygen demand (COD) removal efficiency of 95.7% ± 1.3% at an organic loading rate of 0.8 kgCOD/(m3.d). Bacterial activity measurement of retained sludge from the UASB showed that sulfate-reducing bacteria (SRB), especially hydrogen-utilizing SRB, possessed high activity compared with methane-producing bacteria (MPB). Conversely, the acetate-utilizing activity of MPB was superior to SRB in the second stage of the reactor. The two-stage UASB–DHS system can reduce power consumption by 95% and excess sludge by 98%. In addition, it is possible to prevent emissions of greenhouse gases (GHG), such as methane, using this system. Furthermore, recovered methane from the two-stage UASB can completely cover the electricity needs for the operation of the two-stage UASB–DHS system, accounting for approximately 15% of the electricity used in the natural rubber manufacturing process.


2012 ◽  
Vol 518-523 ◽  
pp. 2625-2630 ◽  
Author(s):  
Ya Dong Guo ◽  
Cui Ting Fu ◽  
Guo Rong Liu ◽  
Chun Shuang Liu

A pilot-scale test was conducted with an up-flow anaerobic sludge blanket (UASB) treating pharmaceutical wastewater containing berberine. The aim of this study was to investigate the performance of UASB in the condition of a high chemical oxygen demand (COD) loading rate from 4.64 to 8.68 kg/m3d and a wide berberine concentration from 254 to 536 mg/L, in order to provide a reference for treating the similar pharmaceutical wastewater containing berberine. The results demonstrated that the UASB average percentage reduction in COD and berberine 68.14% and 57.39%, respectively. Granular sludge was formed during this process. In addition, a model, built on the back propagation neural network (BPNN) theory and linear regression techniques was developed for the simulation of the UASB system performance in the biodegradation of pharmaceutical wastewater containing berberine. The average errors of COD and berberine were -0.55% and 0.24%, respectively. The results indicated that this model built on the BPNN theory was well-fitted to the detected data, and was able to simulate and predict the removal of COD and berberine by UASB reactor.


2017 ◽  
Vol 12 (2) ◽  
pp. 314-321 ◽  
Author(s):  
A. Cerón-Vivas ◽  
A. Noyola

An anaerobic membrane reactor (AnMBR) treating municipal wastewater was evaluated. The experiments were performed using a pilot-scale up-flow anaerobic sludge blanket reactor with a submerged tubular ultrafiltration membrane at a hydraulic retention time of 8 hours. The system worked at an intermittent filtration mode (4 min on/1 min off) with and without nitrogen gas bubbling during the relaxation time (IF4NP and IF4P, respectively). The chemical oxygen demand (COD) removal achieved by the AnMBR was 68.6% and 87.9% for IF4P and IF4NP. Nitrogen bubbling also improved the filtration performance, as the elapsed time to reach 40 kPa for IF4NP and IF4P were 443 and 108 hours, respectively. Results show that intermittent filtration combined with nitrogen bubbling during the period of relaxation was an effective operation strategy in order to minimize membrane fouling and to increase COD removal.


2015 ◽  
Vol 71 (6) ◽  
pp. 929-937 ◽  
Author(s):  
V. A. J. Rodrigues ◽  
T. E. Possmoser-Nascimento ◽  
D. F. C. Dias ◽  
R. G. Passos ◽  
M. von Sperling ◽  
...  

Stabilization ponds are a highly appropriate system for treating sewage in small to medium size communities. However, sludge accumulation at the pond bottom occurs with the passage of time, reducing the net pond volume, which, in principle, could affect its performance. The objective of this paper is to compare the behaviour of two equal ponds in parallel treating the same flow of municipal wastewater from an upflow anaerobic sludge blanket reactor in Brazil. Each pond treated a population equivalent of around 125 inhabitants. One pond had approximately 40% of its net volume occupied by sludge after 11 years of operation, while the other pond had previously undergone complete desludging. The study covers the removal of biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), nitrogen fractions and coliforms. Owing to the presence of a sludge layer, the theoretical hydraulic retention time (HRT) was lower in the pond without sludge. For BOD, COD, SS and Escherichia coli there were no significant differences (Wilcoxon matched-pairs test) between both ponds. The pond without sludge had significantly better removal efficiencies in terms of total Kjeldahl nitrogen and ammonia-N. The sludge layer probably allowed the occurrence of removal mechanisms that compensated for the reduction caused in the HRT.


2019 ◽  
Vol 14 (4) ◽  
pp. 837-850 ◽  
Author(s):  
Hussein I. Abdel-Shafy ◽  
Mona S. M. Mansour ◽  
Ahmed Makki Al-Sulaiman

Abstract The aim of the present study is to achieve an efficient treatment of greywater for reuse in food crops' irrigation. For this purpose, anaerobic followed by enhanced aerobic treatment system was examined via both bench scale and pilot plant. The greywater was separated and collected from the source. The examined systems consisted of Up flow Anaerobic Sludge Blanket (UASB) followed by anaerobic aeration enhanced by Effective Microorganism (EM). The characteristics of the raw greywater were within a high strength level due to the presence of detergents, phosphates, oil and grease. The BOD5/COD was 0.75, showing that biological treatment to this greywater could be achieved. Treatment with UASB showed high elimination of oil & grease, BOD5, COD, total phosphates, and TKN in the range of 60 to 84%. However, TSS and ammonia were poorly removed. UASB effluent was further aerobically treated in a continuous aerated system where the predetermined optimum EM dose was added. Both aeration time and EM dose were previously examined to reach the optimum. Anaerobic/aerobic pilot plant in the continuing treatment was evaluated, where the final treated effluent successfully reached the permissible limits for unrestricted reuse according to the international regulation, namely FAO, WHO, US EPA and Egypt.


Author(s):  
Rodrigo Miguel Klein ◽  
Éverton Hansen ◽  
Patrice Monteiro de Aquim

Abstract The post-tanning wastewater is very diversified, as the post-tanning stage should meet the desirable properties of the leather for the final product, with low standardization of the process (compared to beamhouse and tanning). This makes post-tanning effluent reuse less feasible, and reuse in the post-tanning stage still needs to be explored. This work aims to evaluate the reuse of liquid effluents in the post-tanning process. The work methodology consisted of (i) characterization of water streams (groundwater, liquid effluent after primary treatment, and liquid effluent after secondary treatment); (ii) pilot-scale post-tanning tests using groundwater, primary effluent, and secondary effluent; (iii) characterization of the residual baths from pilot-scale tests (pH, conductivity, total solids, chemical oxygen demand, biochemical oxygen demand, chloride, hardness and oil and grease); and (iv) testing the leather obtained for total sulfated ash and organoleptic properties. Results showed that the primary effluent and the secondary effluent could be reused in pilot-scale post-tanning tests. There was an increase in the conductivity of the residual baths when liquid effluents were reused, which confirms the accumulation of salts in the effluents after their reuse.


2014 ◽  
Vol 4 (02) ◽  
Author(s):  
Rina S. Soetopo ◽  
Sri Purwati ◽  
Henggar Hardiani ◽  
Mukharomah Nur Aini ◽  
Krisna Adhitya Wardhana

A continuous pilot scale study has been conducted to investigate the effectiveness of anaerobic digestion of biological sludge. The sludge has a total solid content of 0.53% - 1.1%, pH of 7.20 to 7.32. Its organic content is about 97 %, The research were conducted in two stages, which are acidification (performed in 3 m3 the Continously Stirred Tank Reactor/CSTR at pH of 5.5 to 6.0) and methanation (performed in 5 m3 the Up Flow Anaerobic Sludge Blanket/UASB reactor at pH 6.5 to 7.0). The retention time (RT) was gradually shortened from 6 days to 1 day for acidification and from 8 days to 2 days for methanation. The results showed that operating the CSTR at the RT of 1 day and the organic loading of 8.23 g Volatile Solid (VS)/m3.day could produce Volatile Fatty Acid (VFA) at an average value of 17.3 g/kg VS.day. Operating the UASB reactor at the RT of 2 days and the organic loading (Chemical Oxygen Demand/COD) of 2.4 kg COD/m3.day could produce biogas at an average value of 66.3 L/day, with an average methane content of 69.9%, methane rate of 0.17 L CH4/g COD reduction or 19.06 L CH4/kg VS. Furthermore, methanation could reduce COD at an average value of 51.2 %, resulting in the effluent average value of COD filtrate and COD total of 210.1 mg/L and 375.2 mg /L, respectively.Keywords: acidification, methanation, CSTR, UASB, biogas ABSTRAKPercobaan digestasi anaerobik lumpur IPAL biologi industri kertas secara kontinyu skala pilot telah dilakukan di industri kertas dengan tujuan mengkaji efektivitas proses digestasi anaerobik dalam mengolah lumpur tersebut. Lumpur yang digunakan memiliki total solids sekitar 0,53% – 1,1%, pH netral (7,20 – 7,32) dengan komponen utama senyawa organik sekitar 97%. Percobaan dilakukan dalam dua tahap yaitu asidifikasi dalam reaktor CSTR berkapasitas 3 m3 pada pH 5,5 – 6,0 dan metanasi dalam reaktor UASB berkapasitas 5 m3 pada pH 6,5 – 7,0. Percobaan dilakukan dengan waktu retensi yang dipersingkat secara bertahap dari 6 hari ke 1 hari untuk proses asidifikasi dan dari 8 hari ke 2 hari untuk proses metanasi. Hasil percobaan menunjukkan bahwa pengoperasian reaktor CSTR dengan waktu retensi 1 hari dan beban organik 8,3 g VS/m3.hari dapat menghasilkan VFA rata-rata 17,3 g/kg VS.hari dengan kisaran 8,36 – 30,59 g/kg VS.hari, sedangkan pengoperasian reaktor UASB pada waktu retensi 2 hari dan beban organik 2,4 kg COD/m3.hari dapat menghasilkan biogas rata-rata 66,3 L/hari dengan kadar metana rata-rata 69,9% atau 0,17 L CH4/g COD reduksi atau 19,06 L CH4/kg VS. Selain itu proses metanasi dapat menurunkan COD terlarut rata-rata 51,2%, dengan konsentrasi efluen COD terlarut  rata-rata 210,1 mg/L dan COD total rata-rata 375,2 mg/L.Kata kunci: asidifikasi, metanasi, CSTR, UASB, biogas


Sign in / Sign up

Export Citation Format

Share Document