scholarly journals Optimization of the Photochemical Degradation of Textile Dye Industrial Wastewaters

2017 ◽  
Vol 33 (1) ◽  
pp. 10 ◽  
Author(s):  
T.H. Dang ◽  
T.P. Mai ◽  
M.T. Truong ◽  
L.T Dao ◽  
T.A.N Nguyen

In this study, the photochemical degradation via photo-Fenton process was carried out to degrade dyes in textile industrial wastewaters. Experimental design methodology was also applied for optimizing effects of factors which influencethe effective treatment such as ferric dose, hydroperoxide dosage, initial pH, reaction time and initial chemical oxygen demand (COD). Two independent variables namely colour and COD removal efficiencieswere used to evaluate the treatment yield. Under the optimal conditions, ca. 99%  and ca. 88%, colour, and COD were removed, respectively.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Gong Cheng ◽  
Jing Lin ◽  
Jian Lu ◽  
Xi Zhao ◽  
Zhengqing Cai ◽  
...  

The photo-Fenton reaction is a promising method to treat organic contaminants in water. In this paper, a Fenton reagent enhanced by microwave electrodeless ultraviolet (MWEUV/Fenton) method was proposed for advanced treatment of nonbiodegradable organic substance in pesticide-containing biotreated wastewater. MWEUV lamp was found to be more effective for chemical oxygen demand (COD) removal than commercial mercury lamps in the Fenton process. The pseudo-first order kinetic model can well describe COD removal from pesticide-containing wastewater by MWEUV/Fenton, and the apparent rate constant (k) was 0.0125 min−1. The optimal conditions for MWEUV/Fenton process were determined as initial pH of 5, Fe2+dosage of 0.8 mmol/L, and H2O2dosage of 100 mmol/L. Under the optimal conditions, the reaction exhibited high mineralization degrees of organics, where COD and dissolved organic carbon (DOC) concentration decreased from 183.2 mg/L to 36.9 mg/L and 43.5 mg/L to 27.8 mg/L, respectively. Three main pesticides in the wastewater, as Dimethoate, Triazophos, and Malathion, were completely removed by the MWEUV/Fenton process within 120 min. The high degree of pesticides decomposition and mineralization was proved by the detected inorganic anions.


2015 ◽  
Vol 73 (2) ◽  
pp. 260-266 ◽  
Author(s):  
F. G. Zha ◽  
D. X. Yao ◽  
Y. B. Hu ◽  
L. M. Gao ◽  
X. M. Wang

The landfill leachate treated by sonication in presence of Fe2+ (US/Fe2+) and then by photo-Fenton achieved the highest total organic carbon (TOC) removal efficiency among the screened processes. The lower initial pH, dosage of Fe2+ and initial concentration of leachate were helpful in raising TOC removal efficiency of leachate by US/Fe2+. The optimal conditions for the US-photo-Fenton process were as follows: initial pH at 3.0, [H2O2]/[TOC0] at 2, [H2O2]/[Fe2+] at 5 and initial concentration of landfill leachate at 600 mg/L. The removal efficiency of TOC, chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD5) were 68.3, 79.6 and 58.2%, while the BOD5/COD rose from 0.20 to 0.43 at optimum condition. Based on gas chromatography–mass spectrometry (GC-MS) results, 36 of a total of 56 pollutants were completely degraded by US-photo-Fenton treatment.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Ahlam Fegousse ◽  
Abdelali El Gaidoumi ◽  
Youssef Miyah ◽  
Rabea El Mountassir ◽  
Anissa Lahrichi

This work is concerned with the study of the adsorption in aqueous medium of a three-dye mixture which contains Methylene Blue, Brilliant Green, and Congo Red on the pineapple bark. This adsorbent material has been characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The experimental design methodology, based on the response surface methodology (RSM) by the central composite design (CCD), has been applied for the optimization of the parameters, namely, the temperature, dose of the adsorbent, and pH. The yield reached 98.91% under optimal conditions (T = 30°C; adsorbent dose = 2.5 g·L−1; pH = 9.8) at an initial concentration of 20 mg·L−1.


2014 ◽  
Vol 68 (6) ◽  
Author(s):  
Dao-Bin Zhang ◽  
Xiao-Gang Wu ◽  
Yi-Si Wang ◽  
Hui Zhang

AbstractA study was conducted on the treatment of landfill leachate by combining the sequencing batch biofilm reactor (SBBR) method with the electro-Fenton method. The reduction of chemical oxygen demand (COD), biological oxygen demand (BOD5), and ammonia nitrogen (NH4+-N) from the leachate by the SBBR method was investigated. For the electro-Fenton experiment, the changes in COD and total organic carbon (TOC) with the increase in H2O2 dosage and electrolysis time under optimal conditions were also analysed. The results showed that the average efficiencies of reduction of COD, BOD5, and NH4+ -N achieved using the SBBR method were 21.6 %, 54.7 %, and 56.1 %, respectively. The bio-effluent was degraded by the subsequent electro-Fenton process, which was rapid over the first 30 min then subsequently slowed. After 60 min of the electro-Fenton treatment, the efficiencies of reduction of TOC, COD, and BOD5 were 40.5 %, 71.6 %, and 61.0 %, respectively. There is a good correlation between the absorbance of leachate at 254 nm (UV254) and COD or TOC during the electro-Fenton treatment.


2014 ◽  
Vol 69 (5) ◽  
pp. 1080-1087 ◽  
Author(s):  
Xianzhong Cao ◽  
Huiqing Lou ◽  
Wei Wei ◽  
Lijuan Zhu

In this study, the Box-Benkhen design and response surface method (RSM) were applied to evaluate and optimize the operating variables during the treatment of tetrahydrofuran (THF) wastewater by Fenton process. The four factors investigated were initial pH, Fe2+ dosage, H2O2 dosage and reaction time. Statistical analysis showed the linear coefficients of the four factors and the interactive coefficients such as initial pH/Fe2+ dosage, initial pH/H2O2 dosage and Fe2+ dosage/H2O2 dosage all significantly affected the removal efficiency. The RSM optimization results demonstrated that the chemical oxygen demand (COD) removal efficiency could reach up to 47.8% when initial pH was 4.49, Fe2+ dosage was 2.52 mM, H2O2 dosage was 20 mM and reaction time was 110.3 min. Simultaneously, the biodegradability increased obviously after the treatment. The main intermediates of 2-hydroxytetrahydrofuran, γ-butyrolactone and 4-hydroxybutanoate were separated and identified and then a simple degradation pathway of THF was proposed. This work indicated that the Fenton process was an efficient and feasible pre-treatment method for THF wastewater.


2016 ◽  
Vol 75 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Shunwu Wang ◽  
Ziwang Li ◽  
Qinglong Yu

Guar gum is considered as a main component of oilfield wastewater. This work is intended to optimize the experimental conditions (H2O2 dosage, Fe2+ dosage, initial concentration of organics, initial pH and temperature) for the maximum oxidative degradation of guar gum by Fenton's reagent. The kinetics of guar gum removal were evaluated by means of the chemical oxygen demand (COD) and the absorbance measurements. The batch experiment results showed that the optimum conditions were: H2O2 dosage, 10,000 mg/L; Fe2+dosage, 2,000 mg/L; initial concentration of organics, 413 mg/L; pH, 3 and temperature, 35 °C, under which the COD removal could reach 61.07% and fairly good stability could be obtained. Under the optimum experimental conditions, using UV irradiation to treat the wastewater, the photo-Fenton systems can successfully eliminate COD from guar gum solution. The COD removal always obeyed a pseudo-first-order kinetics and the degradation rate (kapp) was increased by 25.7% in the photo-Fenton process compared to the Fenton process. The photo-Fenton system needed less time and consequently less quantity of H2O2 to obtain the same results as the Fenton process. The photo-Fenton process needs a dose of H2O2 20.46% lower than that used in the Fenton process to remove 79.54% of COD. The cost of the photo/Fenton process amounted to RMB9.43/m3, which was lower than that of the classic Fenton process alone (RMB10.58/m3) and the overall water quality of the final effluent could meet the class Ι national wastewater discharge standard for the petrochemical industry of China.


2005 ◽  
Vol 48 (spe) ◽  
pp. 207-218 ◽  
Author(s):  
Antonio Carlos Silva Costa Teixeira ◽  
Lucas Mendes ◽  
Giselle Stollar ◽  
Roberto Guardani ◽  
Cláudio Augusto Oller do Nascimento

The photochemical degradation of agrochemicals in aqueous solution by means of advanced oxidation processes (AOPs) was studied. The photo-Fenton process was evaluated in terms of the time evolution of dissolved organic carbon (COD) and chemical oxygen demand (DOC), their total removals, and increase in biodegradability of treated wastewater. Under the experimental conditions studied, the process showed to be superior to other AOPs, at any Fe(II) and H2O2 concentrations. The results pointed towards the use of solar irradiation and low cost commercial application.


2013 ◽  
Vol 68 (3) ◽  
pp. 608-613 ◽  
Author(s):  
G.-D. Ji ◽  
X.-R. Zhang ◽  
F. Guo

The present report aimed to describe the roles of ultrasonic power and reaction time in the Fenton reagent-based degradation of carbazole in wastewater, and to analyze the effects of the Fe2SO4 and H2O2 concentrations and the initial pH on the reaction kinetics. Application of 40 or 80 W of ultrasound at a frequency of 40 KHz substantially improved the effectiveness of carbazole degradation, whereas application of 20 W of ultrasound had little effect. The optimal concentration of the Fe2SO4·7H2O catalyst was lower for extended operating times. Increased degradation was observed with increasing H2O2 concentrations below 1.8 mg L−1, whereas decreased degradation was observed at concentrations above this value. The best performance was obtained at a neutral or slightly alkaline pH range (pH 7–9) rather than at the commonly used acidic pH range (pH 2–4). Under optimal conditions, the extent of carbazole degradation was 98% after 180 min. The degradation process followed second-order kinetics.


Sign in / Sign up

Export Citation Format

Share Document