scholarly journals Electrooxidation of simulated wastewater containing pharmaceutical amoxicillin on thermally prepared IrO2/Ti

2021 ◽  
Vol 11 (2) ◽  
pp. 172
Author(s):  
Thiery Auguste Foffié Appia ◽  
Lassiné Ouattara

<p>The electrooxidation of amoxicillin (AMX) on the iridium oxide electrode thermally prepared (400°C) has been investigated by cyclic voltammetry and preparative electrolysis. Physical characterization by Scanning Electron Microscopy (SEM) showed that the IrO<sub>2</sub> electrode has a rough surface with pores' presence. In cyclic voltammetry, the oxidation of AMX occurs directly at the anode's surface or via the higher degree oxide of iridium oxide (IrO<sub>3</sub>).  It is noted that the oxidation process of AMX can be controlled by diffusion combined with the phenomenon of adsorption. In preparative electrolysis, the effect of several parameters has been investigated. These are the current density, the support medium, the initial pH. The findings obtained show a weak degradation of amoxicillin. The Chemical Oxygen Demand (COD) reduction rate is less than 11% under our experimental conditions, indicating that the IrO2 electrode leads to the parent compound's conversion. Also, the degradation of the organic compound is favored in a very acidic medium.<strong></strong></p><p>Furthermore, the effect of inorganic ions such as SO<sub>4</sub><sup>2-</sup>, PO<sub>4</sub><sup>3-</sup>, NO<sub>3</sub><sup>-</sup>, Cl<sup>-</sup> was evaluated. Investigations show that these ions' effects are diverse, with COD reduction rates ranging from 2.47%; 2.68%; 7.7%; 16.41%, and 71.65%, respectively, in the absence and the presence of SO<sub>4</sub><sup>2-</sup>, PO<sub>4</sub><sup>3-</sup>, NO<sub>3</sub><sup>-</sup>, Cl<sup>- </sup>ions. SO<sub>4</sub><sup>2-</sup> have virtually no effect on enhancing the degradation of amoxicillin. PO<sub>4</sub><sup>3-</sup> ions provide a slight improvement in amoxicillin degradation. As for nitrate ions, their influence is 2.31 times that of phosphate ions. Chloride ions improve the performance of the electrooxidation of amoxicillin on IrO2 very significantly. The presence of chloride ions makes it possible to go from 2928.35 (absence of inorganic ions) to 33.19 kWh per Kg of COD. This represents an energy gain of over 98%.</p>

2016 ◽  
Vol 75 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Shunwu Wang ◽  
Ziwang Li ◽  
Qinglong Yu

Guar gum is considered as a main component of oilfield wastewater. This work is intended to optimize the experimental conditions (H2O2 dosage, Fe2+ dosage, initial concentration of organics, initial pH and temperature) for the maximum oxidative degradation of guar gum by Fenton's reagent. The kinetics of guar gum removal were evaluated by means of the chemical oxygen demand (COD) and the absorbance measurements. The batch experiment results showed that the optimum conditions were: H2O2 dosage, 10,000 mg/L; Fe2+dosage, 2,000 mg/L; initial concentration of organics, 413 mg/L; pH, 3 and temperature, 35 °C, under which the COD removal could reach 61.07% and fairly good stability could be obtained. Under the optimum experimental conditions, using UV irradiation to treat the wastewater, the photo-Fenton systems can successfully eliminate COD from guar gum solution. The COD removal always obeyed a pseudo-first-order kinetics and the degradation rate (kapp) was increased by 25.7% in the photo-Fenton process compared to the Fenton process. The photo-Fenton system needed less time and consequently less quantity of H2O2 to obtain the same results as the Fenton process. The photo-Fenton process needs a dose of H2O2 20.46% lower than that used in the Fenton process to remove 79.54% of COD. The cost of the photo/Fenton process amounted to RMB9.43/m3, which was lower than that of the classic Fenton process alone (RMB10.58/m3) and the overall water quality of the final effluent could meet the class Ι national wastewater discharge standard for the petrochemical industry of China.


2009 ◽  
Vol 60 (9) ◽  
pp. 2261-2270 ◽  
Author(s):  
M. Kobya ◽  
E. Demirbas ◽  
A. Akyol

Electrocoagulation (EC) method with iron electrode was used to treat the textile wastewater in a batch reactor. Iron electrode material was used as a sacrificial electrode in monopolar parallel mode in this study. The removal efficiencies of the wastewater by EC were affected by initial pH of the solution, current density, conductivity and time of electrolysis. Under the optimal experimental conditions (initial pH 6.9, current density of 10 mA/cm2, conductivity of 3,990 μS/cm, and electrolysis time of 10 min), the treatment of textile wastewater by the EC process led to a removal capacity of 78% of chemical oxygen demand (COD) and 92% of turbidity. The energy and electrode consumptions at the optimum conditions were calculated to be 0.7 kWh/kg COD (1.7 kWh/m3) and 0.2 kgFe/kg COD (0.5 kgFe/m3), respectively. Moreover, the operating cost was calculated as 0.2 €/kg removed COD or 0.5 €/m3 treated wastewater. Zeta potential measurement was used to determine the charge of particle formed during the EC which revealed that Fe(OH)3 might be responsible for the EC process.


2009 ◽  
Vol 60 (5) ◽  
pp. 1295-1301 ◽  
Author(s):  
Ling-Ling Hsieh ◽  
Hui-Jei Kang ◽  
Huey-Lih Shyu ◽  
Chen-Yu Chang

An advanced ultrasound/Fenton/nanoscale iron oxidation process was applied for treatment of dye wastewater. In this study, the Taguchi statistical method was used to design experiments for the optimization of the ultrasound/Fenton/nanoscale iron process. The experimental design consisted of testing five factors (dosage of H2O2, concentration of Fe2 + , amount of nanoscale iron added, treatment time, and initial pH), with four levels of each factor tested. Chemical oxygen demand (COD) measurements were conducted to determine the efficiency of the water samples. An analysis of the mean sign-to-noise (S/N) ratio indicated that the optimum combination of levels of the factors providing maximal COD reduction of aqueous azo dyes (500 mg/L) were: treatment time = 60 min, dosage of nanoscale iron = 1 g/L, initial pH = 2, and ratio of [dye]:[H2O2]:[Fe2 + ]=1:3.6:2.4. The efficiencies of decolorization and COD reduction were accomplished under these optimum conditions at levels of 99.91% and 63.36%, respectively. The percentage contribution of each factor was determined by the analysis of variance (ANOVA). The results show that the contributions of the five factors—dosage of H2O2, concentration of Fe2 + , amount of nanoscale iron added, treatment time, and initial pH—were 29.33%, 21.37%, 22.51%, 12.93% and 12.35%, respectively.


2014 ◽  
Vol 13 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Ghasem Najafpour Darzi ◽  
Reza Katal ◽  
Hossein Zare ◽  
Seyed Omid Rastegar ◽  
Poorya Mavaddat

1984 ◽  
Vol 49 (10) ◽  
pp. 2349-2354 ◽  
Author(s):  
František Vláčil ◽  
Karel Koňák

The selectivity coefficients of the nitrate and chloride ions and of anionic chloro complexes of Au(III), Rh(III), Pd(II), and Pt(IV) for ion exchange on Spheron DEAE in the chloride form are determined by the dynamic method. the complex anion species formed are identified and the ion exchange nature of the sorption of precious metals on this sorbent is confirmed based on the elution order of the precious metals as determined previously by the column chromatography on Spheron DEAE using hydrochloric acid as the mobile phase. The effect of the presence of perchlorate in the mobile phase during the liquid chromatography of precious metals and during the chromatographic determination of nitrate traces is explained.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2925 ◽  
Author(s):  
Arianna Ricci ◽  
Giuseppina Paola Parpinello ◽  
Nemanja Teslić ◽  
Paul Andrew Kilmartin ◽  
Andrea Versari

Twenty commercially available oenological tannins (including hydrolysable and condensed) were assessed for their antiradical/reducing activity, comparing two analytical approaches: The 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging spectrophotometric assay and the cyclic voltammetry (CV) electrochemical method. Electrochemical measurements were performed over a −200 mV–500 mV scan range, and integrated anodic currents to 500 mV were used to build a calibration graph with (+)-catechin as a reference standard (linear range: From 0.0078 to 1 mM, R2 = 0.9887). The CV results were compared with the DPPH• assay (expressed as % of radical scavenged in time), showing high correlation due to the similarity of the chemical mechanisms underlying both methods involving polyphenolic compounds as reductants. Improved correlation was observed by increasing the incubation time with DPPH• to 24 h (R2 = 0.925), demonstrating that the spectrophotometric method requires a long-term incubation to complete the scavenging reaction when high-molecular weight tannins are involved; this constraint has been overcome by using instant CV measurements. We concluded that the CV represents a valid alternative to the DPPH• colorimetric assay, taking advantage of fast analysis and control on the experimental conditions and, because of these properties, it can assist the quality control along the supply chain.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 359
Author(s):  
Liping Zhang ◽  
Shengnian Wu ◽  
Nan Zhang ◽  
Ruihan Yao ◽  
Eryong Wu

Salicylic hydroxamic acid is a novel flotation reagent used in mineral processing. However, it impacts the flotation wastewater leaving behind high chromaticity which limits its reuse and affects discharge for mining enterprises. This study researched ozonation catalyzed by the granular activated carbon (GAC) method to treat the chromaticity of the simulated mineral processing wastewater with salicylic hydroxamic acid. The effects of pH value, ozone (O3) concentration, GAC dosage, and reaction time on chromaticity and chemical oxygen demand (CODCr) removal were discussed. The results of individual ozonation experiments showed that the chromaticity removal ratio reached 79% and the effluent chromaticity exceeded the requirement of reuse and discharge when the optimal experimental conditions were pH value 3, ozone concentration 6 mg/L, and reaction time 40 min. The orthogonal experimental results of catalytic ozonation with GAC on chromaticity removal explained that the chromaticity removal ratio could reach 96.36% and the chromaticity of effluent was only 20 when the optimal level of experimental parameters was pH value 2.87, O3 concentration 6 mg/L, GAC dosage 0.06 g/L, reaction time 60 min respectively. The degradation pathway of salicylic hydroxamic acid by ozonation was also considered based on an analysis with ultraviolet absorption spectrum and high-performance liquid chromatography (HPLC).


Author(s):  
Takeshi Mizunoya ◽  
Noriko Nozaki ◽  
Rajeev Kumar Singh

AbstractIn the early 2000s, Japan instituted the Great Heisei Consolidation, a national strategy to promote large-scale municipal mergers. This study analyzes the impact that this strategy could have on watershed management. We select the Lake Kasumigaura Basin, the second largest lake in Japan, for the case study and construct a dynamic expanded input–output model to simulate the ecological system around the Lake, the socio-environmental changes over the period, and their mutual dependency for the period 2012–2020. In the model, we regulate and control the following water pollutants: total nitrogen, total phosphorus, and chemical oxygen demand. The results show that a trade-off between economic activity and the environment can be avoided within a specific range of pollution reduction, given that the prefectural government implements optimal water environment policies, assuming that other factors constraining economic growth exist. Additionally, municipal mergers are found to significantly reduce the budget required to improve the water environment, but merger budget efficiency varies nonlinearly with the reduction rate. Furthermore, despite the increase in financial efficiency from the merger, the efficiency of installing domestic wastewater treatment systems decreases drastically beyond a certain pollution reduction level and eventually reaches a limit. Further reductions require direct regulatory instruments in addition to economic policies, along with limiting the output of each industry. Most studies on municipal mergers apply a political, administrative, or financial perspective; few evaluate the quantitative impact of municipal mergers on the environment and environmental policy implications. This study addresses these gaps.


2019 ◽  
Vol 38 (1) ◽  
pp. 69-77
Author(s):  
Noppawan Photong ◽  
Jaruwan Wongthanate

This research is focused on the feasibility of biofuel from water hyacinth mixed with cassava starch sediment by biological and physical conversion processes and the comparison of the gross electricity production in these processes. The biological conversion process produced biomethane by anaerobic digestion. The optimal conditions of biomethane production were a ratio of water hyacinth and cassava starch sediment at 25:75, initial pH of 7.5, thermophilic temperature (55 ± 2°C) and C/N ratio of 30. The maximum biomethane yield measured was 436.82 mL CH4 g chemical oxygen demand (COD)−1 and the maximum COD removal was 87.40%. The physical conversion process was bio-briquette. It was found that the ratios of water hyacinth and cassava starch sediment at 10:90, 20:80, 30:70, 40:60 and 50:50 were the best ratio of fuel properties and close to the Thai Community Product Standard, with heating values of 15.66, 15.43, 15.10, 14.88 and 14.58 MJ kg−1, respectively. Moreover, results showed that the gross electricity production of the biological conversion process (biomethane) was 3.90 kWh and the gross electricity production of the physical conversion process (bio-briquette) from the ratios of water hyacinth and cassava starch sediment at 10:90, 20:80, 30:70, 40:60 and 50:50 were 1.52, 1.50, 1.47, 1.45 and 1.42 kWh, respectively.


2012 ◽  
Vol 441 ◽  
pp. 555-558
Author(s):  
Feng Tao Chen ◽  
San Chuan Yu ◽  
Xing Qiong Mu ◽  
Shi Shen Zhang

The Ti/SnO2-Sb2O3/PbO2 electrodes were prepared by thermal decomposition method and its application in the electrochemical degradation of a heteropolyaromatic dye, Methylene blue (MB), contained in simulated dye wastewater were investigated under mild conditions. The effects of pH, current density and electrolysis time on de-colorization efficiency were also studied. Chemical oxygen demand (COD) was selected as another parameter to evaluate the efficiency of this degradation method on treatment of MB wastewater. The results revealed that when initial pH was 6.0, current density was 50 mA·cm2, electrolysis time was 60 min, Na2SO4 as electrolyte and its concentration was 3.0 g·dm3, the de-colorization and COD removal efficiency can reach 89.9% and 71.7%, respectively.


Sign in / Sign up

Export Citation Format

Share Document