Thermally activated persulfate oxidation of NAPL chlorinated organic compounds: effect of soil composition on oxidant demand in different soil-persulfate systems

2017 ◽  
Vol 75 (8) ◽  
pp. 1794-1803 ◽  
Author(s):  
Jialu Liu ◽  
Zhehua Liu ◽  
Fengjun Zhang ◽  
Xiaosi Su ◽  
Cong Lyu

This study investigates the interaction of persulfate with soil components and chlorinated volatile organic compounds (CVOCs), using thermally activated persulfate oxidation in three soil types: high sand content; high clay content; and paddy field soil. The effect of soil composition on the available oxidant demand and CVOC removal rate was evaluated. Results suggest that the treatment efficiency of CVOCs in soil can be ranked as follows: cis-1,2-dichloroethene > trichloroethylene > 1,2-dichloroethane > 1,1,1-trichloroethane. The reactions of soil components with persulfate, shown by the reduction in soil phase natural organics and mineral content, occurred in parallel with persulfate oxidation of CVOCs. Natural oxidant demand from the reaction of soil components with persulfate exerted a large relative contribution to the total oxidant demand. The main influencing factor in oxidant demand in paddy-soil-persulfate systems was natural organics, rather than mineral content as seen with sand and clay soil types exposed to the persulfate system. The competition between CVOCs and soil components for oxidation by persulfate indicates that soil composition exhibits a considerable influence on the available oxidant demand and CVOC removal efficiency. Therefore, soil composition of natural organics and mineral content is a critical factor in estimating the oxidation efficiency of in-situ remediation systems.

Chemosphere ◽  
2005 ◽  
Vol 61 (4) ◽  
pp. 551-560 ◽  
Author(s):  
Kun-Chang Huang ◽  
Zhiqiang Zhao ◽  
George E. Hoag ◽  
Amine Dahmani ◽  
Philip A. Block

2016 ◽  
Vol 318 ◽  
pp. 497-506 ◽  
Author(s):  
Libin Peng ◽  
Li Wang ◽  
Xingting Hu ◽  
Peihui Wu ◽  
Xueqing Wang ◽  
...  

2017 ◽  
Vol 19 (3) ◽  
pp. 389-395 ◽  

Being used in large quantities for some decades, antibiotics have been of little notice since their existence in the environment. Present study aims at investigating the optimization of Ciprofloxacin removal (CIP) in Thermally Activated Persulfate (TAP)/Aeration systems by Central Composite Design (CCD). The effect of operating parameters including initial pH, CIP concentration, Persulfate concentration and temperature on the removal process was investigated in order to find out the optimum conditions. Typically, high temperature, high Persulfate dose, and low initial CIP concentration increased the removal efficiency of CIP. At the tested pH range of 3–11, the highest removal occurred at pH 3.93. Finally, the effects of Mn3O4 Nanoparticles, N2 gas, and COD reduction in optimal condition were studied. Mn3O4 Nanoparticles and N2 gas in optimized conditions increased the removal efficiency from 93.41 to 90.1, respectively. The results showed that Thermally Activated Persulfate oxidation was the efficient process for the treatment of aqueous solution containing Ciprofloxacin due to the production of Sulfate radicals.


Sign in / Sign up

Export Citation Format

Share Document