Enhanced degradation of cephalosporin antibiotics by matrix components during thermally activated persulfate oxidation process

2020 ◽  
Vol 384 ◽  
pp. 123332 ◽  
Author(s):  
Yajie Qian ◽  
Xiang Liu ◽  
Ke Li ◽  
Pin Gao ◽  
Jiabin Chen ◽  
...  
2019 ◽  
Vol 80 (3) ◽  
pp. 563-574 ◽  
Author(s):  
Feng Ding ◽  
Yong Xie ◽  
Tengyan Wu ◽  
Na Liu

Abstract This study was conducted to evaluate the influence of chloride ions (Cl−) on organic contaminants decolorization by the Fe0-activated persulfate process (PS/Fe0), as well as the generation of transformation products. Orange II (OII) was chosen as the target pollution. The results indicated that Cl− influenced the OII decolorization by PS/Fe0 system, resulting in the generation of chlorine-containing by-products. OII containing Cl− solution can be efficiently decolorized by PS/Fe0 process, and the decolorization efficiencies changed depending on Cl− concentration due to the reaction between Cl− and sulfate radicals (SO4–•). The operating cost for 94% color and 64% chemical oxygen demand (COD) removal of the OII dye was estimated at 0.73 USD/m3. The chlorine-containing by-products, such as chlorobenzene, 3,5-dichloro-benzene-1,2-diol, and 2,3-dichloro-2,3-dihydro-1,4-naphthoquinone, were generated during the reaction. The results further indicated that increasing both PS concentration and temperature enhanced OII decolorization and reduced the generation of chlorine-containing intermediates. The addition of ultrasound can further decrease the generation of chlorine-containing intermediates under high-temperature conditions. The proposed pathways of decolorization of OII containing Cl− also indicated that SO4–• dominated the OII degradation, while the presence of Cl− led to the generation of chlorine-containing intermediates.


2017 ◽  
Vol 75 (8) ◽  
pp. 1794-1803 ◽  
Author(s):  
Jialu Liu ◽  
Zhehua Liu ◽  
Fengjun Zhang ◽  
Xiaosi Su ◽  
Cong Lyu

This study investigates the interaction of persulfate with soil components and chlorinated volatile organic compounds (CVOCs), using thermally activated persulfate oxidation in three soil types: high sand content; high clay content; and paddy field soil. The effect of soil composition on the available oxidant demand and CVOC removal rate was evaluated. Results suggest that the treatment efficiency of CVOCs in soil can be ranked as follows: cis-1,2-dichloroethene > trichloroethylene > 1,2-dichloroethane > 1,1,1-trichloroethane. The reactions of soil components with persulfate, shown by the reduction in soil phase natural organics and mineral content, occurred in parallel with persulfate oxidation of CVOCs. Natural oxidant demand from the reaction of soil components with persulfate exerted a large relative contribution to the total oxidant demand. The main influencing factor in oxidant demand in paddy-soil-persulfate systems was natural organics, rather than mineral content as seen with sand and clay soil types exposed to the persulfate system. The competition between CVOCs and soil components for oxidation by persulfate indicates that soil composition exhibits a considerable influence on the available oxidant demand and CVOC removal efficiency. Therefore, soil composition of natural organics and mineral content is a critical factor in estimating the oxidation efficiency of in-situ remediation systems.


2016 ◽  
Vol 318 ◽  
pp. 497-506 ◽  
Author(s):  
Libin Peng ◽  
Li Wang ◽  
Xingting Hu ◽  
Peihui Wu ◽  
Xueqing Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document