Synthesis of coral-globular-like composite Ag/TiO2-SnO2 and its photocatalytic degradation of rhodamine B under multiple modes

2017 ◽  
Vol 76 (8) ◽  
pp. 2120-2132 ◽  
Author(s):  
Q. Song ◽  
L. Li ◽  
N. Zhuo ◽  
H. N. Zhang ◽  
X. Chen ◽  
...  

Taking cetyltrimethylammonium bromide (CTAB) as the template and using TiO2 as the substrate, coral-globular-like composite Ag/TiO2-SnO2 (CTAB) was successfully synthesized by the sol–gel combined with a temperature-programmed treatment method. X-ray diffraction, scanning electron microscopy (SEM), UV–vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, SEM combined with X-ray energy dispersive spectroscopy, and N2 adsorption–desorption tests were employed to characterize samples' crystalline phase, chemical composition, morphology and surface physicochemical properties. Results showed that composites not only had TiO2 anatase structure, but also had some generated SnTiO4, and the silver species was metallic Ag0. Ag/TiO2-SnO2 (CTAB) possessed a coral-globular-like structure with nanosheets in large quantities. The photocatalytic activity of Ag/TiO2-SnO2 (CTAB) had studied by degrading organic dyes under multi-modes, mainly using rhodamine B as the model molecule. Results showed that the coral-globular-like Ag/TiO2-SnO2 (CTAB) was higher photocatalytic activity than that of commercial TiO2, Ag/TiO2-SnO2, TiO2-SnO2 (CTAB), and TiO2-SnO2 under ultraviolet light irradiation. Moreover, Ag/TiO2-SnO2 (CTAB) composite can significantly affect the photocatalytic degradation under multi-modes including UV light, visible light, simulated solar light and microwave-assisted irradiation. Meanwhile, the photocatalytic activity of Ag/TiO2-SnO2 (CTAB) was maintained even after three cycles, indicating that the catalyst had good usability.

2016 ◽  
Vol 680 ◽  
pp. 193-197
Author(s):  
San Ti Yi ◽  
Si Qin Zhao

TiO2, 1%La/TiO2, 1%Ce/TiO2 and a series of Laand Ce co-doped TiO2 photocatalysts were prepared by sol-gel method. Using sol-gel method combine with hydrothermal method prepared rare earth La, Ce and nitrogen co-doped TiO2 photocatalysts. The microstructure, spectroscopy performance and ion doped form of prepared samples were characterized by X-ray powder diffraction (XRD), UV-Vis diffuse reflectance spectroscopy techniques and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of doped TiO2 were examined by measuring the photodegradation of methyl orange. The results showed that the products were all anatase TiO2 nano powder, doping Laor Cehinder the growth of TiO2 particle, further more, doping Laand Cetogether hinder the growth of TiO2 particle more effective, doping N broaden the light response range of TiO2 photocatalyst. At the same time, the photocatalytic activity results indicated that the prepared samples showed superior UV light photocatalytic activity, the sample 1% (La:Ce,9:1)-N/TiO2 showed the highest UV-vis photocatalytic activity.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Mingjie Ma ◽  
Weijie Guo ◽  
Zhengpeng Yang ◽  
Shanxiu Huang ◽  
Guanyu Wang

TiO2/fine char (FC) photocatalyst was prepared via sol-gel method with tetrabutyl titanate as the precursor and FC as the carrier. The structural property of TiO2/FC photocatalyst was investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the photocatalytic activity of TiO2/FC was evaluated by photocatalytic degradation of rhodamine B (RhB) aqueous solution under UV light irradiation. The results showed that TiO2was successfully coated on the surface of FC, and the TiO2/FC photocatalyst had better photocatalytic efficiency and stability for degradation of RhB under UV light illumination as compared to that of the pure TiO2and FC. The study provided a novel way for the application of FC to the photocatalytic degradation of organic wastes.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Douga Nassoko ◽  
Yan-Fang Li ◽  
Jia-Lin Li ◽  
Xi Li ◽  
Ying Yu

Titanium dioxide (TiO2) doped with neodymium (Nd), one rare earth element, has been synthesized by a sol-gel method for the photocatalytic degradation of rhodamine-B under visible light. The prepared samples are characterized by X-ray diffractometer, Raman spectroscopy, UV-Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller measurement. The results indicate that the prepared samples have anatase and brookite phases. Additionally, Nd as Nd3+may enter into the lattice ofTiO2and the presence of Nd3+substantially enhances the photocatalytic activity ofTiO2under visible light. In order to further explore the mechanism of photocatalytic degradation of organic pollutant, photoluminescence spectrometer and scavenger addition method have been employed. It is found that hydroxide radicals produced by Nd-dopedTiO2under visible light are one of reactive species for Rh-B degradation and photogenerated electrons are mainly responsible for the formation of the reactive species.


Separations ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 25
Author(s):  
Chukwuka Bethel Anucha ◽  
Ilknur Altin ◽  
Emin Bacaksız ◽  
Tayfur Kucukomeroglu ◽  
Masho Hilawie Belay ◽  
...  

Abatement of contaminants of emerging concerns (CECs) in water sources has been widely studied employing TiO2 based heterogeneous photocatalysis. However, low quantum energy yield among other limitations of titania has led to its modification with other semiconductor materials for improved photocatalytic activity. In this work, a 0.05 wt.% CuWO4 over TiO2 was prepared as a powder composite. Each component part synthesized via the sol-gel method for TiO2, and CuWO4 by co-precipitation assisted hydrothermal method from precursor salts, underwent gentle mechanical agitation. Homogenization of the nanopowder precursors was performed by zirconia ball milling for 2 h. The final material was obtained after annealing at 500 °C for 3.5 h. Structural and morphological characterization of the synthesized material has been achieved employing X-ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy, Brunauer–Emmett–Teller (BET) N2 adsorption–desorption analysis, Scanning electron microscopy-coupled Energy dispersive X-ray spectroscopy (SEM-EDS), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-Vis diffuse reflectance spectroscopy (UV-vis DRS) for optical characterization. The 0.05 wt.% CuWO4-TiO2 catalyst was investigated for its photocatalytic activity over carbamazepine (CBZ), achieving a degradation of almost 100% after 2 h irradiation. A comparison with pure TiO2 prepared under those same conditions was made. The effect of pH, chemical scavengers, H2O2 as well as contaminant ion effects (anions, cations), and humic acid (HA) was investigated, and their related influences on the photocatalyst efficiency towards CBZ degradation highlighted accordingly.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1671 ◽  
Author(s):  
Weike Zhang ◽  
Yanrong Zhang ◽  
Kai Yang ◽  
Yanqing Yang ◽  
Jia Jia ◽  
...  

A silicon dioxide/carbon nano onions/titanium dioxide (SiO2/CNOs/TiO2) composite was synthesized by a simple sol-gel method and characterized by the methods of X-ray diffraction (XRD), scanning electronic microscope (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR), thermogravimetric analysis (TG), differential scanning calorimeter (DSC) and UV-Vis diffuse reflectance spectra (UV-Vis DRS). In this work, the photocatalytic activity of the SiO2/CNOs/TiO2 photocatalyst was assessed by testing the degradation rate of Rhodamine B (RhB) under visible light. The results indicated that the samples exhibited the best photocatalytic activity when the composite consisted of 3% CNOs and the optimum dosage of SiO2/CNOs/TiO2(3%) was 1.5 g/L as evidenced by the highest RhB degradation rate (96%). The SiO2/CNOs/TiO2 composite greatly improved the quantum efficiency of TiO2. This work provides a new option for the modification of subsequent nanocomposite oxide nanoparticles.


2013 ◽  
Vol 6 (2) ◽  
pp. 245-255 ◽  
Author(s):  
Dongfang Zhang

Abstract In this study, mixed phase ZnO-TiO2 nanocomposite consisting of hexagonal ZnO and anatase/rutile TiO2 has been synthesized via sol-gel process.The physical and photochemical properties of samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), photoluminscience spectra (PL) and and photocurrent action spectra techniques. In the case of minerlization of rhodamine B (RhB) and malachite green (MG) dyes, the coupled ZnO-TiO2 nanocomposite with the suitable band structure and the lowest photoluminescence intensity showed the best photodecolorization activity. Synergistic effects between the two oxides for photocatalytic decomposition of RhB and MG are proposed to elucidate the decolorization mechanism. The lifetime of electrons and holes was prolonged in the ZnO-anatase/rutile multiple-component system, which can enhance the light harvest and the ability of generating photo-induced electron-hole pairs of active sites, and the favorable electron-transfer properties in the coupled ZnO-TiO2 nanocomposite. Therefore, the as-prepared ZnO-TiO2 nanocomposite showed an excellent efficiency towards the removal of aqueous organic dyes and it is of certain significance for environmental photocatalysis.


2013 ◽  
Vol 67 (4) ◽  
pp. 722-728 ◽  
Author(s):  
Jian Wang ◽  
Jingqun Gao ◽  
Jun Wang ◽  
Yu Zhai ◽  
Zhongxing Wang ◽  
...  

Ag/TiO2 coated composite was prepared via sol-gel method in order to elucidate its application in magnetic field assisted photocatalytic degradation of dyes. Through the degradation of organic dyes, the key influences such as Ag amount, heat-treated temperature and time on the photocatalytic activity of Ag/TiO2, as well as UV irradiation time, rotational speed, dye concentration and magnetic sheet number on the photocatalytic degradation were studied. Results showed that the Ag/TiO2 with 25 wt% Ag content heat-treated at 550 °C for 60 min has the best photocatalytic activity. With the increase of UV light irradiation time, rotational speed and magnetic sheet number, the degradation rate is improved. Different dye degradation proved that the method could universally be used.


2021 ◽  
Author(s):  
Rui Zhang ◽  
ziyin chen ◽  
Chen Zhao ◽  
Kunlin Zeng ◽  
Lu Cai ◽  
...  

Abstract A novel binary BiSI/Ag2CO3 photocatalyst with excellent visible light-driven photocatalytic performance was prepared. The products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) and electrochemical impedance spectroscopy (EIS). The photocatalytic activity of the samples were evaluated by photocatalytic degradation of rhodamine B(RhB) under the irradiation of visible light. The results showed that the BiSI improves the photocatalytic activity of BiSI/Ag2CO3. Moreover, when the mass ratio of BiSI in BiSI/Ag2CO3 composites was 40%, the as-prepared BiSI/Ag2CO3 composite exhibited the best photocatalytic activity for degrading RhB. Finally, the possible mechanism for photodegradation over the BiSI/Ag2CO3 composites is also proposed.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Qianzhi Xu ◽  
Xiuying Wang ◽  
Xiaoli Dong ◽  
Chun Ma ◽  
Xiufang Zhang ◽  
...  

S/Zn codoped TiO2nanomaterials were synthesized by a sol-gel method. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy, photoluminescence spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the morphology, structure, and optical properties of the prepared samples. The introduction of Zn and S resulted in significant red shift of absorption edge for TiO2-based nanomaterials. The photocatalytic activity was evaluated by degrading reactive brilliant red X-3B solution under simulated sunlight irradiation. The results showed S/Zn codoped TiO2exhibited higher photocatalytic activity than pure TiO2and commercial P25, due to the photosynergistic effect of obvious visible light absorption, efficient separation of photoinduced charge carriers, and large surface area. Moreover, the content of Zn and S in the composites played important roles in photocatalytic activity of TiO2-based nanomaterials.


2011 ◽  
Vol 287-290 ◽  
pp. 1640-1645 ◽  
Author(s):  
Min Guang Fan ◽  
Zu Zeng Qin ◽  
Zi Li Liu ◽  
Tong Ming Su

A series of BixY(2-x)O3photocatalysts were successfully prepared by a solid-state reaction and were subsequently characterized by powder X-ray diffraction, UV-vis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy (XPS). The UV-vis diffuse reflectance spectra revealed that the BixY(2-x)O3samples absorbed light in the visible-light range (400-800 nm). The XPS results indicated that active oxygen species were generated on the Bi1.8Y0.2O3surface, which displayed a higher photocatalytic activity. When using photocatalytic degradation molasses fermentation wastewater as a model reaction, the Bi1.8Y0.2O3showed higher photocatalytic activity in comparison to Bi0.2Y1.8O3under visible-light irradiation.


Sign in / Sign up

Export Citation Format

Share Document