scholarly journals Formulation of a minimal nutritional medium for enhanced lipid productivity in Chlorella sp. and Botryococcus sp. using response surface methodology

2018 ◽  
Vol 77 (6) ◽  
pp. 1660-1672 ◽  
Author(s):  
Rashi Vishwakarma ◽  
Dolly Wattal Dhar ◽  
Sunil Pabbi

Abstract Chlorella sp. MCC 7 and Botryococcus sp. MCC 31 were investigated to enable large-scale biodiesel production from minimal constituents in the growth medium. Response surface methodology (RSM) was used to maximise the biomass productivity and lipid yield using only nitrogen (N), phosphorus (P) and potassium (K) as urea, single super phosphate and muriate of potash. The optimum values were 0.42 g/L nitrogen; 0.14 g/L phosphorus and 0.22 g/L potassium for Chlorella sp.; and 0.46 g/L; 0.14 g/L and 0.25 g/L for Botryococcus sp. Lipid yield of 42% for Chlorella sp. and 52% in Botryococcus sp. was observed. An enhancement in lipid yield by approximately 55% for Chlorella sp. and 73% for Botryococcus sp. was registered as compared to original nutrient medium. Fourier transform infrared (FTIR) analysis of extracted lipids revealed characteristic bands for triglycerides. This study provided utilisation of a practicable nutrient recipe in the form of N, P, K input for enhanced lipid yield from the selected microalgal strains.

2020 ◽  
Author(s):  
Shubhangi Mishra ◽  
Pradeep Kumar Srivast ◽  
Virendra Singh ◽  
Monika Sharma

Abstract The uncontrolled utilization for the textile products is increasing year by year resulting with the elevating wastewater generated from the textile industries, which makes it among the prevalent sources of critical environmental deteoration issue globally. Products obtained from the dyes used are the primary toxic product for aquatic life, they cause aesthetic pollution, eutrophication, perturbation and increase in BOD and COD in aquatic life. Three types of textile wastewaters (Acid Yellow dye, Acid orange dye and Basic pink dye) has been used for wastewater treatment and microalgal (Chlorella pyrenoidosa) biomass production. Nitrogen content in textile wastewaters is very less, hence urea is used as nitrogen source in wastewater. Optimal growth condition (Urea-0.4g/L, wastewater- 40%(v/v)) is developed through Response surface methodology (RSM). The biomass productivity for chlorella sp. is 1.2-1.5 g/L/day in textile wastewaters. The reduction efficiency of COD, Nitrate-N Ammonia-N, Phosphate-P, and Dye(color) removal for Chlorella is 90-95%, 75-85%, 90-98%, 65-74% and 40-65%.After harvesting the Biomass by flocculation method it can be used for biofuel production by in-situ transesterification.


2020 ◽  
Author(s):  
Shubhangi Mishra ◽  
Pradeep Srivast ◽  
Virendra Singh ◽  
Monika Sharma

Abstract The uncontrolled utilization for the textile products is increasing year by year resulting with the elevating wastewater generated from the textile industries, which makes it among the prevalent sources of critical environmental deteoration issue globally. Products obtained from the dyes used are the primary toxic product for aquatic life, they cause aesthetic pollution, eutrophication, perturbation and increase in BOD and COD in aquatic life. Three types of textile wastewaters (Acid Yellow dye, Acid orange dye and Basic pink dye) has been used for wastewater treatment and microalgal (Chlorella pyrenoidosa) biomass production. Nitrogen content in textile wastewaters is very less, hence urea is used as nitrogen source in wastewater. Optimal growth condition (Urea-0.4g/L, wastewater- 40%(v/v)) is developed through Response surface methodology (RSM). The biomass productivity for chlorella sp. is 1.2-1.5 g/L/day in textile wastewaters. The reduction efficiency of COD, Nitrate-N Ammonia-N, Phosphate-P, and Dye(color) removal for Chlorella is 90-95%, 75-85%, 90-98%, 65-74% and 40-65%.After harvesting the Biomass by flocculation method it can be further used for biofuel production by in-situ transesterification.


2021 ◽  
Vol 13 (4) ◽  
pp. 2216
Author(s):  
Najeeha Mohd Apandi ◽  
Mimi Suliza Muhamad ◽  
Radin Maya Saphira Radin Mohamed ◽  
Norshuhaila Mohamed Sunar ◽  
Adel Al-Gheethi ◽  
...  

The present study aimed to optimize the production of Scenedesmus sp. biomass during the phycoremediation process. The biomass productivity was optimized using face centred central composite design (FCCCD) in response surface methodology (RSM) as a function of two independent variables that included wet market wastewater concentrations (A) with a range of 10% to 75% and aeration rate (B) with a range of 0.02 to 4.0 L/min. The results revealed that the highest biomass productivity (73 mg/L/d) and maximum growth rate (1.19 day−1) was achieved with the 64.26% of (A) and 3.08 L/min of (B). The GC-MS composition analysis of the biomass yield extract revealed that the major compounds are hexadecane (25%), glaucine (16.2%), and phytol (8.33%). The presence of these compounds suggests that WMW has the potential to be used as a production medium for Scenedesmus sp. Biomass, which has several applications in the pharmaceutical and chemical industry.


2017 ◽  
Vol 33 (1) ◽  
pp. 66
Author(s):  
A. Garba ◽  
M. M. Abarshi ◽  
M. B. Shuaib ◽  
R. Sulaiman

Energies ◽  
2012 ◽  
Vol 5 (9) ◽  
pp. 3307-3328 ◽  
Author(s):  
Muhammad Waseem Mumtaz ◽  
Ahmad Adnan ◽  
Farooq Anwar ◽  
Hamid Mukhtar ◽  
Muhammad Asam Raza ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document