scholarly journals Carbamazepine removal from low-strength municipal wastewater using a combined UASB-MBR treatment system

2021 ◽  
Vol 83 (8) ◽  
pp. 1920-1931
Author(s):  
M. J. Moya-Llamas ◽  
A. Trapote ◽  
D. Prats

Abstract An Upflow Anaerobic Sludge Blanket reactor combined with a two-stage membrane bioreactor were operated for 193 days in order to evaluate the biological removal of carbamazepine (CBZ) from low-strength municipal wastewater. The system worked in three different organic load stages (0.7 ± 0.1 kg COD·m−3·d−1, 0.4 ± 0.1 kg COD·m−3·d−1 and 0.1 ± 0.0 kg COD·m−3·d−1) to assess the impact of the influent OLR on operational parameters such as anaerobic and aerobic sludge retention time (SRT), acidity, volatile fatty acids (VFAs), biomass activity or biogas production. The highest carbamazepine removals were achieved during the anaerobic stage (UASB reactor), reaching averages of 48.9%, 48.0% and 38.2% operating at high, medium and low OLR, respectively. The aerobic treatment (MBR) served as post-treatment, improving the removals, and the global UASB-MBR system reached averages of 70.0%, 59.6% and 49.8% when the influent was at medium and low OLR, respectively. The results demonstrate the potential of combined biological systems on the removal of recalcitrant pharmaceuticals.

2021 ◽  
Vol 39 (1A) ◽  
pp. 130-136
Author(s):  
Khairi R. Kalash ◽  
Majid A. Dixon ◽  
Hussein IR. Sultan ◽  
Raad A. Ali

In this work, the Upflow Anaerobic Sludge Blanket “UASB” reactor treated effluent wastewater to investigate the process performance on a pilot plant scale. Municipal wastewater at high and medium strength with different organic load rate OLR (0.6-9) kg COD m-3day-1 with the flow of 20 l/h, up-flow velocity 0.4 m/h, hydraulic retention time HRT 9 h at a temperature of (20-30 ºC) was evaluated. The wastewater concentration, including TSS, COD was measured, and the removal efficiencies of chemical oxygen demand (COD) and total suspended solid TSS were calculated and summarized as 45-85% and 70-75%, respectively, depending on organic load rate OLR. Effluent volatile fatty acids VFA was measured, and the results were in the range between 12-90 mg/L depending on OLR with a slight change in pH (8.3-8.4), which means the conversion of COD to methane and increase ammonia concentration.


2011 ◽  
Vol 63 (5) ◽  
pp. 877-884 ◽  
Author(s):  
P. Mijalova Nacheva ◽  
M. Reyes Pantoja ◽  
E. A. Lomelí Serrano

The performance of an upflow anaerobic sludge blanket (UASB) reactor operated at ambient temperature (20.9–25.2°C) was analysed for the treatment of slaughterhouse wastewater previously pre-treated for solid separation. The experimental work was carried out in a reactor with 15 L effective volume. Four organic loads were applied and the process performance was evaluated. The COD removal rate increased with the load rise from 4 to 15 kg COD.m−3.d−1. Removal efficiencies of 90% were obtained with a load of 15 kg COD.m−3.d−1. The entrapment of suspended solids in the sludge blanket was greater in proportion during the first two stages due to the low upflow velocities used when loads of 4 and 7 kg COD.m−3.d−1 were evaluated. This phenomenon did not affect the structure of the biological grains or their methanogenic activity. More than 50% of the organic nitrogen was degraded, causing a 3% increase of ammonia concentration. The concentrations of the volatile fatty acids were not high and the wastewater alkalinity was enough to prevent acidification. The yield coefficient of methane production increased with the load rise, reaching 0.266 m3/kg CODremoved at 15 kg COD.m−3.d−1 organic load. The UASB reactor is a good option for the biological treatment of pre-treated slaughterhouse wastewater. However, additional treatment is required in order to accomplish the water quality requirements in discharges to water bodies.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 509-515 ◽  
Author(s):  
Huub J. Gijzen ◽  
Frank Kansiime

The start-up and performance of an Upflow Anaerobic Sludge Blanket (UASB) reactor and a Polyurethane Carrier Reactor (PCR) was investigated under similar operational conditions. The presence of polyurethane cubes as a carrier material in the PCR resulted in fast reactor start-up due to quick immobilization of methanogenic associations. Start-up of the UASB was slower compared to the PCR, which was mainly reflected in a lower biogas production and acetate degradation efficiency. However, when enough biomass had accumulated in the UASB reactor after 15 weeks of operation, the performance of the two reactors was almost the same in terms of biogas production and volatile fatty acids degradation. Efficient VFA degradation (about 90%) and biogas production (5.2 l/l.d) were achieved at an organic loading rate of 13.2 g/l.d) and HRT of 6 h. When hydraulic retention time was subsequently reduced from 6 to 2 h, the performance of the UASB reactor was better than that of the PCR. The inferior performance of the PCR may have been attributed to channelling of the influent in the reactor at high liquid flow rate.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Anna Doloman ◽  
Yousef Soboh ◽  
Andrew J. Walters ◽  
Ronald C. Sims ◽  
Charles D. Miller

Anaerobic digestion (AD) is a microbiologically coordinated process with dynamic relationships between bacterial players. Current understanding of dynamic changes in the bacterial composition during the AD process is incomplete. The objective of this research was to assess changes in bacterial community composition that coordinates with anaerobic codigestion of microalgal biomass cultivated on municipal wastewater. An upflow anaerobic sludge blanket reactor was used to achieve high rates of microalgae decomposition and biogas production. Samples of the sludge were collected throughout AD and extracted DNA was subjected to next-generation sequencing using methanogenmcrAgene specific and universal bacterial primers. Analysis of the data revealed that samples taken at different stages of AD had varying bacterial composition. A group consisting of Bacteroidales, Pseudomonadales, and Enterobacteriales was identified to be putatively responsible for the hydrolysis of microalgal biomass. The methanogenesis phase was dominated byMethanosarcina mazei. Results of observed changes in the composition of microbial communities during AD can be used as a road map to stimulate key bacterial species identified at each phase of AD to increase yield of biogas and rate of substrate decomposition. This research demonstrates a successful exploitation of methane production from microalgae without any biomass pretreatment.


2012 ◽  
Vol 9 ◽  
pp. 57-62
Author(s):  
Fiza Sarwar ◽  
Wajeeha Malik ◽  
Muhammad Salman Ahmed ◽  
Harja Shahid

Abstract: This study was designed using actual effluent from the sugary mills in an Up-flow Anaerobic Sludge Blanket (UASB) Reactor to evaluate treatability performance. The reactor was started-up in step-wise loading rates beginning from 0.05kg carbon oxygen demand (COD)/m3-day to 3.50kg-COD/m3-day. The hydraulic retention time (HRT) was slowly decreased from 96 hrs to eight hrs. It was observed that the removal efficiency of COD of more than 73% can be easily achieved at an HRT of more than 16 hours corresponding to an average organic loading rate (OLR) of 3.0kg-COD/m3-day, at neutral pH and constant temperature of 29°C. The average VFAs (volatile fatty acids) and biogas production was observed as 560mg/L and 1.6L/g-CODrem-d, respectively. The average methane composition was estimated as 62%. The results of this study suggest that the treatment of sugar mills effluent with the anaerobic technology seems to be more reliable, effective and economical.DOI: http://dx.doi.org/10.3126/hn.v9i0.7075 Hydro Nepal Vol.9 July 2011 57-62


Author(s):  
D. Mathioudakis ◽  
I. Michalopoulos ◽  
K. Kalogeropoulos ◽  
K. Papadopoulou ◽  
G. Lyberatos

Abstract The objective of the current work is to study the impact of the operational parameters' variation (HRT, OLR and T) on biomethane productivity in a Periodic Anaerobic Baffled Reactor (PABR). The feedstock used was a biomass product named FORBI (Food Residue Biomass), which is dried and shredded source-separated household food waste. The Periodic Anaerobic Baffled Reactor (PABR) is an innovative, high-rate bioreactor. Apart from the Hydraulic Retention Time (HRT) and the Organic Loading Rate (OLR), an important operational parameter is the Switching Period (T) of the feeding compartment: when T is high, the bioreactor operation is similar to an Anaerobic baffled reactor (ABR), while when it is low, the operation approaches that of an Upflow Anaerobic Sludge Blanket Reactor (UASBR). Nine distinct experimental phases were conducted, during which the operational parameters of the PABR were consecutively modified: the HRT varied from 9 to 2.5 days, T between 2 days and 1 and finally the OLR from 1.24 gCOD/Lbioreactor*d to 8.08 gCOD/Lbioreactor*d. The maximum biomethane yield was 384 LCH4/kgFORBI corresponding to the operation at HRT = 5 d, OLR = 2.14 gCOD/Lbioreactor*d and T = 2 days. Similar efficiency (333 LCH4/kg­FORBI) was achieved at higher OLR (4.53 gCOD/Lbioreactor*d).


2018 ◽  
Vol 78 (9) ◽  
pp. 1871-1878 ◽  
Author(s):  
Gustavo Vargas-Morales ◽  
Rolando Chamy ◽  
Santiago García-Gen

Abstract A variable-gain controller for anaerobic digestion of industrial winery wastewater is presented. A control law using both volatile fatty acids (VFA) and methane production rate as controlled variables and organic loading rate (OLR) as manipulated variable is defined. The process state is quantitatively estimated by an empirical function comparing VFA measurements against a setpoint value; then, it is modified with a second empirical function that compares the methane flow rate with a maximum capacity reference, and finally it is adjusted with a third factor considering the actual hydraulic retention time. The variable-gain function determines the extent of the OLR change applied to the system. The controller was successfully validated in a 95 L upflow-anaerobic-sludge-blanket (UASB) reactor, treating industrial wine wastewater at OLR ranged between 2.0 and 39.2 g COD/L d for 120 days at mesophilic conditions. Higher performance was achieved contrasted with a conventional strategy carried out in a parallel UASB unit.


2018 ◽  
Vol 7 (2) ◽  
pp. 1 ◽  
Author(s):  
Ryland Cairns ◽  
Paul Mead

With a greater push to achieve waste management and renewable energy targets technologies such as anaerobic digestion (AD) have increased in popularity. One such technology option is the Upflow Anaerobic Sludge Blanket (UASB) reactor, these have been shown to be a particularly robust option for high strength organic wastewaters, such as those generated by the malted ingredient manufacturing industry. Despite their effectiveness they are reported to have lengthy and complex start ups due to the range of physiochemical and biological interactions influencing sludge blanket stability. This process can be sped up by seeding the plant from sludge from similar plants, however this is not always possible. This paper aims to investigate the start up of a full-scale mesophilic UASB treating malted ingredient wastewater that was initially seeded with a granular sludge treating dairy wastewater. Operational performance during the first 75 days of start up was comparable to that of a fully established plant with a COD removal efficiency in excess of 81.89% and a biogas methane concentration greater than 57.24%. During this period the plant remained operationally robust with the Organic Loading Rates (OLR) exuding the greatest influence on plant performance. Similar to operations during stable conditions key operational parameters such as HRT times, temperatures and pH did not exert a strong influence on the plant. 


2018 ◽  
Vol 34 (6) ◽  
pp. 3100-3105
Author(s):  
Nyimas Yanqoritha ◽  
Muhammad Turmuzi ◽  
Irvan Irvan ◽  
Fatimah Batubara ◽  
Ilmi Ilmi

Wastewater of tofu industry contains very high organic content, then anaerobic process is the most suitable for degrading this liquid waste. The hybrid upflow anaerobic sludge blanket reactor (HUASBR) was applied in this study because it has the advantage in ensuring good contact between biomass and substrate where a suspension medium and anaerobic filter are able to withstand more biomass in the attached media. Processing Anaerobic process is carried out with the help of bacteria where bacteria need seeding and acclimatization. Acclimatization is the process of adaptation of microorganisms to wastewater to be treated. This adaptation process is carried out by adding waste water from the smallest concentration to the actual concentration. The purpose of this study is to determine the effect of variations in organic load rate (OLR) on the acclimatization process in removing COD, biogas production in accordance with the pH of the anaerobic degradation process so that the optimal process of the acclimatization process can be obtained. In this study, the acclimatization process took 200 days with variation of OLR in the range of 1.5 - 5.9 kg COD m-3 d-1 at HRT 24 hours and flow rate up (Vup) of 0.08 m/h. The objective of OLR variation was to evaluate acclimatization process on the HUASBR performance during process optimization. The highest biogas production and removal efficiency of COD were achieved in pH range of 6.5 - 7.6. While, the highest COD removal efficiency obtained was 86.57% on the 140th day and biogas production 7700 ml for OLR 4.8 kg COD m-3d-1 at HRT 24 h. Consequently, the optimum OLR for treating the tofu wastewater could be achieved up to 4.8 kg COD m-3d-1 and HRT 24h.


1995 ◽  
Vol 32 (12) ◽  
pp. 121-129 ◽  
Author(s):  
A. Espinosa ◽  
L. Rosas ◽  
K. Ilangovan ◽  
A. Noyola

A laboratory UASB reactor was fed with cane molasses stillage at organic loadings from 5 to 21.5 kg COD/m3 d. With an organic load of 17.4 kg COD/m3 d, an accumulation of VFA, principally propionic acid, was observed due to little bioavailability or lack of trace metals (Fe, Ni, Co and Mo). Associated to this, the performance of the UASB reactor was low (44% COD removal efficiency), with an alkalinity ratio above 0.4. The addition of Fe (100 mg/l), Ni (15 mg/l), Co (10 mg/l) and Mo (0.2 mg/l) to the influent reduced significantly the level of propionic acid (5291mg/l to 251 mg/l) and acetic acid (1100 mg/l to 158 mg/l). The COD removal efficiency increased from 44% to 58%, the biogas production from 10.7 to 14.8 l/d (NTP) and 0.085 to 0.32 g CH4-COD/g SSV d for specific sludge methanogenic activity with propionic acid as substrate. These improved results were obtained with high COD (68.9 g/l) and organic load (21.5 kg COD/m3 d).


Sign in / Sign up

Export Citation Format

Share Document