scholarly journals A review on the application of nanoporous zeolite for sanitary landfill leachate treatment

Author(s):  
Abdullah Zahid Turan ◽  
Mustafa Turan

Abstract This review deals with low-cost nanoporous zeolites for the treatment of sanitary landfill leachate. Organic contaminants and ammoniacal nitrogen are significant parameters in landfill leachate treatment. Adsorption processes are regarded as promising alternative treatment options in this respect. Zeolites are aluminosilicate materials that are widely used in separation, filtration, adsorption and catalysis. Natural zeolite is a low-cost and readily available form of zeolite and is a promising candidate to be used as an ion exchange material for ammonia and other inorganic pollutant removal from landfill leachate. In this review, adsorption isotherms and kinetic models in batch system are evaluated and adsorption design parameters of the fixed-bed system are presented. Studies on ammonia removal from landfill leachate via zeolites have been thoroughly investigated. Leachate treatment systems combined with zeolites are presented. Cost of zeolites are also reported in comparison with other adsorbents. The investigated studies demonstrate that activated zeolite can improve the removal of COD, NH3-N and color significantly compared to the case where raw zeolite is used. Moreover, the composite of activated carbon and zeolite is also favorable for ammonia removal according to reported findings, where best adsorptive removal is attained on the composite media (24.39 mg/g).

2021 ◽  
Vol 11 (11) ◽  
pp. 5009
Author(s):  
Mayk Teles de Oliveira ◽  
Ieda Maria Sapateiro Torres ◽  
Humberto Ruggeri ◽  
Paulo Scalize ◽  
Antonio Albuquerque ◽  
...  

Sanitary landfill leachate (LL) composition varies according to climate variables variation, solid waste characteristics and composition, and landfill age. Leachate treatment is essentially carried out trough biological and physicochemical processes, which have showed variability in efficiency and appear a costly solution for the management authorities. Electrocoagulation (EC) seems a suitable solution for leachate treatment taking into account the characteristics of the liquor. One of the problems of EC is the electrode passivation, which affects the longevity of the process. One solution to this problem could be the replacement of the electrode by one made of recyclable material, which would make it possible to change it frequently and at a lower cost. The objective of the present work was to evaluate the removal of heavy metals (As, Ba, Cd, Cr, Cu, Fe, Pb, Mn, Ni, Se and Zn) and coliforms from a LL by EC using electrodes made from steel swarf (SfE) up to 8 h. Removal efficiencies of detected heavy metals were 51%(Cr), 59%(As), 71%(Cd), 72%(Zn), 92%(Ba), 95%(Ni) and >99%(Pb). The microbial load of coliforms in leachate was reduced from 10.76 × 104 CFU/mL (raw leachate) to less than 1 CFU/mL (after treatment with SfE) (i.e., approximately 100% reduction). The use of SfE in EC of LL is very effective in removing heavy metals and coliforms and can be used as alternative treatment solution for such effluents.


2016 ◽  
Vol 283 ◽  
pp. 76-88 ◽  
Author(s):  
Tânia F.C.V. Silva ◽  
Amélia Fonseca ◽  
Isabel Saraiva ◽  
Rui A.R. Boaventura ◽  
Vítor J.P. Vilar

Author(s):  
Vítor J. P. Vilar ◽  
José M. S. Moreira ◽  
Amélia Fonseca ◽  
Isabel Saraiva ◽  
Rui A. R. Boaventura

AbstractThis paper reports on landfill leachate treatment by Fenton (Fe


2016 ◽  
Author(s):  
Mohamad Anuar Kamaruddin ◽  
Mohd Suffian Yusoff ◽  
Hamidi Abdul Aziz ◽  
Rasyidah Alrozi

2018 ◽  
Vol 40 (22) ◽  
pp. 2897-2905 ◽  
Author(s):  
Amanda Vitória Santos ◽  
Laura Hamdan de Andrade ◽  
Míriam Cristina Santos Amaral ◽  
Liséte Celina Lange

2011 ◽  
Vol 63 (4) ◽  
pp. 666-670 ◽  
Author(s):  
V. D. Leite ◽  
H. W. Pearson ◽  
J. T. de Sousa ◽  
W. S. Lopes ◽  
M. L. D. de Luna

This study evaluated the efficiency of a shallow (0.5 m deep) waste stabilization pond series to remove high concentrations of ammonia from sanitary landfill leachate. The pond system was located at EXTRABES, Campina Grande, Paraiba, Northeast Brazil. The pond series was fed with sanitary landfill leachate transported by road tanker to the experimental site from the sanitary landfill of the City of Joao Pessoa, Paraiba. The ammoniacal-N surface loading on the first pond of the series was equivalent to 364 kg ha−1 d−1 and the COD surface loading equivalent to 3,690 kg ha−1 d−1. The maximum mean ammonia removal efficiency was 99.5% achieved by the third pond in the series which had an effluent concentration of 5.3 mg L−1 ammoniacal-N for an accumulative HRT of 39.5 days. The removal process was mainly attributed to ammonia volatilization (stripping) from the pond surfaces as a result of high surface pH values and water temperatures of 22–26°C. Shallow pond systems would appear to be a promising technology for stripping ammonia from landfill leachate under tropical conditions.


Sign in / Sign up

Export Citation Format

Share Document