scholarly journals The effect of different types of AOPs supported by hydrogen peroxide on the decolorization of methylene blue and viscose fibers dyeing wastewater

Author(s):  
Zeynep Bilici ◽  
Mohammed Saleh ◽  
Erdal Yabalak ◽  
Alireza Khataee ◽  
Nadir Dizge

Abstract Wastewater from the textile industry containing a high concentration of organic and inorganic chemicals have strong color and residual chemical oxygen demand (COD). Therefore, advanced oxidation processes (AOPs) are very good candidates to treat textile industry wastewater. In this study, we investigated the effect of different types of AOPs supported with hydrogen peroxide (H2O2) on the treatment of viscose fibers dyeing wastewater. Fenton, photo-Fenton, and Fenton supported subcritical water oxidation (FSWO) processes were chosen as AOPs to compare the treatment efficiency of viscose fibers dyeing wastewater. The effects of solution pH, Fe2+ concentration, and H2O2 concentration on the treatment of viscose fibers dyeing wastewater were tested. The maximum color and COD removal efficiency was obtained corresponding to pH 2.5 for all oxidation methods when MB dye solution was used. However, the maximum efficiencies were obtained at pH 3.0 for real textile wastewater decolorization. The MB dye removal efficiency was increased to 97.22, 100, and 100% for Fenton, photo-Fenton, and FSWO processes, respectively, when the addition of H2O2 concentration was adjusted to 125 mg/L. However, the maximum color removal efficiencies of viscose fibers dyeing wastewater were obtained 56.94, 61.26, 64.11% for Fenton, photo-Fenton, FSWO processes, respectively. As a result, the FSWO showed maximum color removal efficiencies.

1997 ◽  
Vol 36 (12) ◽  
pp. 215-222 ◽  
Author(s):  
Shyh-Fang Kang ◽  
Huey-Min Chang

This study was designed to use both artificial and real textile secondary effluents to evaluate (1) the COD and color removal efficiencies for ferrous coagulation and Fenton's coagulation, and (2) the feasibility of using hydrogen peroxide to improve ferrous coagulation to meet more stringent effluent standards. The results indicate that the optimum pHs for both ferrous coagulation and Fenton's preoxidation processes range between 8.0–10 and 3.0–5.0, respectively. The rate for color removal is faster than that for COD removal in the Fenton's preoxidation process. The removals of COD and color are mainly accomplished during Fenton's preoxidation step. The ratio of COD removal for Fenton's coagulation versus ferrous coagulation, given the same ferrous dosage, ranges from 1.4 to 2.3, and it ranges from 1.1 to 1.9 for color removal, using two effluent samples. Therefore, using hydrogen peroxide can enhance the ferrous coagulation, and this ensures more stringent effluent standards of COD and color are met.


Author(s):  
Paula Cajal-Mariñosa ◽  
Ruth G. de la Calle ◽  
F. Javier Rivas ◽  
Tuula Tuhkanen

AbstractThe removal efficiency of two different types of peroxide addition, catalyzed hydrogen peroxide (CHP) and sodium percarbonate (SPC) were compared on a highly PAH-contaminated soil from a wood impregnation site. In an attempt to simulate real in situ reagents delivery, experiments have been carried out in acrylic columns. The main parameters affecting contaminant removal were the reagent’s temperature and the total addition of peroxide (g


2002 ◽  
Vol 45 (12) ◽  
pp. 279-286 ◽  
Author(s):  
M.F. Sevimli ◽  
C. Kinaci

The aim of this study is to investigate the effect of some operational parameters on the efficiency of ozonation and Fenton's process for decolorization and COD removal. Acid Red 337 and Reactive Orange 16 dye solutions and the effluents of acid and reactive dye-bath effluents were used in the experiments. The influence of ozone dose and pH for color and COD removal from the wastewater were studied. Increasing the ozone dose increased the rate constants, and color and COD removal efficiencies. Ozone consumption ratio per unit color and COD removal at any time was found to be almost the same while the applied ozone dose was different. pH did not significantly affect color and COD removal from the wastewater by ozonation. In spite of having high color removal efficiencies (60–91%), limited COD removal efficiencies between 9–17% at 30 minutes ozonation time were obtained. In the Fenton oxidation experiments, the effects of pH, temperature, dosage of ferrous sulfate and hydrogen peroxide, and the proper ratio of Fe(II)/H2O2 were studied. The result indicates that up to 99% color removal and 82% COD removal can be obtained by Fenton's oxidation. While Fenton's oxidation was greatly affected by the pH value, temperature of wastewater did not significantly affect the Fenton process for color removal. Increasing the dose of both hydrogen peroxide and ferrous sulfate enhanced the removal efficiencies of color and COD. Suitable ratios of Fe(II)/H2O2 were found to be between 0.5 and 0.83.


2003 ◽  
Vol 6 (1) ◽  
Author(s):  
Shinta Kunitomo ◽  
Tadashi Ohbo ◽  
Bing Sun

AbstractIn this investigation, the pulsed discharge characteristics in water and the phenol-degradation properties of three different types of reactors, which had rod-rod, rod-plate and wire-cylinder format, were studied. Among the three types of reactors, it was found that the phenol removal efficiency was highest for the wirecylinder reactor configuration. In addition, the influence of pulse energy for removal efficiency was investigated. The removal efficiency at 180 kV-72 J discharged is higher than at 180 kV-960 J discharged. Furthermore, the effect of hydrogen peroxide on phenol removal efficiency was also studied under conditions of 120 kV-72 J, and it was found that the phenol degradation rate was higher when hydrogen peroxide was used.


2019 ◽  
Vol 80 (1) ◽  
pp. 134-143
Author(s):  
Deniz İzlen Çifçi ◽  
Rıza Atav ◽  
Yalçın Güneş ◽  
Elçin Güneş

Abstract The aim of this article was to clarify which type of dye chromophores could be decolorized efficiently with the use of laccase enzyme. For this purpose, enzymatic degradation of different type of dye classes (4 reactive, 2 acid and 1 basic dye) having various chromophore groups was investigated by using commercial laccase from Cerrena unicolor. It was observed that the chromophore structure of dye is very important on enzymatic color removal efficiency. According to the experimental results, it was found that color removal efficiencies (20 mg/L initial dye) were 98.7% for RB220 (0.1 g/L enzyme after 6 h), 95.1% for RB19 (0.1 g/L enzyme after 48 h), 90.8% for AR42 (0.1 g/L enzyme after 48 h) while they were 60.9% for AR114 (0.25 g/L enzyme), 58.6% for RB21 (0.5 g/L enzyme), 39.7% for RR239 (0.25 g/L enzyme) even after seven days. As a result, it can be said that the highest decolorization rate was achieved for the reactive dye having formazan copper complex (RB220) chromophore. On the other hand, the enzymatic degradation of basic dye (BB9) was found to be rather difficult compared to the acid and reactive dyes used in this study and the maximum color removal was 42.8% after seven days.


Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 660 ◽  
Author(s):  
Bao-Son Trinh ◽  
Phung T. K. Le ◽  
David Werner ◽  
Nguyen H. Phuong ◽  
Tran Le Luu

This study investigated if biochar, a low-cost carbon-rich material, can be modified with reactive materials for decolorization of dyeing wastewater. Two types of rice husk biochars were produced by using different processes of gasification and pyrolysis in limited air condition. The biochars were first magnetized and then modified with nano-scale zero-valent iron (nZVI) to achieve the final products of magnetic-nZVI biochars. Batch experiments were conducted to investigate the efficiency of the modified biochars for reducing color of the reactive dyes yellow (RY145), red (RR195), and blue (RB19) from dyeing solutions. Results showed that color removal efficiency of the modified biochars was significantly enhanced, achieving the values of 100% for RY145 and RR195 and ≥65% for RB19, while the effectiveness of the original biochar was significantly lower. In addition, with increasing dose of the modified biochars, the color removal efficiency increased accordingly. In contrast, when the dose of nZVI was increased beyond a certain value then its color removal efficiency decreased accordingly. It is reported that the magnetic-nZVI rice husk biochars effectively removed the reactive dyes. The impregnation of nZVI particles on the biochar surface spatially separates the nZVI particles, prevents its aggregation and therefore enhances the decolorization efficiency.


Author(s):  
Bao-Son Trinh ◽  
Pham Thi Kieu Chinh ◽  
Ha Đoan Tram

Rice husk biochar, a rich-carbon material, can be modified with other reactive elements to improve its original properties for organic-contaminant removal efficiency. In this study, rice husk was heated to 600 oC without air in a closed-furnace for producing the rice husk biochar (BC600). BC600 was then magnetized for making an intermediate magnetized rice husk biochar (BC600-mag). Finally, nano zero valent iron (nZVI) was synthesized on BC600-mag for producing magnetized biochar impregnated nZVI (BC600-mag-nZVI). Batch experiments were conducted to investigate color removal efficiency of BC600-mag-nZVI for the reactive dyes yellow (RY145), red (RR195) and blue (RB19) from dyeing solutions with the initial color concentrations of approximately 400 Pt-Co. Results showed that, for RY145 and RR195, the optimum color removal efficiency (ɳopt) achieved the values of 95 and 93% at doses of 0.50 and 1.50 kg BC600-mag-nZVI/m3 dyeing solution, according to the treated color decreased to 21 and 30 Pt-Co, respectively, which are lower than the allowable discharged standard of column A (≤ 50 Pt-Co) of QCVN 40:2011/BTNMT, while for RB19, the ɳopt achieved the values of 63 % at dose of 8.00 kg BC600-mag-nZVI/m3 dyeing solution, according to the treated color decreased to 147 Pt-Co which is lower than the allowable discharged standard of column B (≤ 150 Pt-Co) of QCVN 40:2011/BTNMT. In addition, with increasing dose of the modified biochars, the color removal efficiency increased accordingly, achieving almost 100% for RY145 and RR195 and over 70% for RB19. It is concluded that the magnetic-nZVI rice husk biochars effectively removed the reactive dyes. In the other hand, the impregnation of nZVI particles on the biochar backbone spatially separates the particles, prevents their aggregation and therefore enhances their reactivity This study therefore proposes a new application of rice husk biochar modified with magnetized iron oxides and zero valent iron decolorization of dyeing wastewater.


2013 ◽  
Vol 750-752 ◽  
pp. 1448-1451 ◽  
Author(s):  
Cui Zhen Sun ◽  
Xiao Rui Zhang ◽  
Zhi Bin Zhang ◽  
Yan Hao Zhang

A new polymer of epichlorohydrin-ethylenediamine was obtained by suspension polycondensation of ethylenediamine with epichlorohydrin. The color removal performance and mechanism of the polymer in the treatment of synthetic reactive dyes wastewater was investigated, and in comparison with polymeric aluminum ferric chloride (PAFC) and polydimethyldiallylammonium chloride (PDMDAAC). The results showed that epichlorohydrin-ethylenediamine achieved higher color removal efficiency, and its adsorption-bridging and electric neutralization ability playedimportant roles in the flocculation process.


2016 ◽  
Vol 19 (2) ◽  
pp. 28-37
Author(s):  
Ha Bui Manh ◽  
Duy Nguyen Ngoc ◽  
Hien Nguyen Quoc

Decolorization from synthetic wastewater containing Reactive Red 24 (RR24) using gamma Cobalt-60 ray was investigated. The influence of the irradiation dose, initial pH, initial dye and hydrogen peroxide (H2O2) concentration were evaluated. The pH effect has proved that lower decolorization efficiency was observed in alkaline medium as compared to the neutral and acid medium. While color removal efficiency increased with increasing absorbed dose. A synergistic effect of gamma radiation with H2O2 was applied and the results showed that H2O2 accelerated decolorization process, however when the dosage of H2O2 exceeded the optimal concentration, the color removal efficiency attained saturation and even reduced. The color removal efficiencies achieved over 99% at the dose of 4 kGy, initial pH 7, initial dye concentrationof 100 mg/L and H2O2 concentration of 3mM. These results highlighted the potential of radiation technology for dye removal from textile wastewater.


2001 ◽  
Vol 1 (4) ◽  
pp. 177-184
Author(s):  
B.I. Dvorak ◽  
J.W. Schauble

Environmental engineers are frequently faced with uncertainty in making design decisions because the true value of many process parameters is unknown. In this study, the design of countercurrent air stripping towers was modeled using fuzzy numbers, taking into account uncertainties in mass transfer and Henry's constant. It was found that, in addition to cost, the risk of failure is an important design consideration for stripping tower design. A significant over-design is both cost-effective and results in less risk of design failure. The air-to-water ratio that yielded the least risk of failure switched from low to high as the removal efficiency of the tower increased. An important result is that at lower removal efficiencies, tower design and operation is most sensitive to uncertainties in mass transfer and at higher removal efficiencies, tower design and operation is most sensitive to uncertainties in Henry's constant . The implication is that low air-to-water ratios are best when the regulatory target removal efficiency is low and/or when the uncertainty in the value of the contaminant's Henry's constant is larger than the uncertainty in the mass transfer coefficient value. Otherwise a high air-to-water ratio results in the least risk of process failure.


Sign in / Sign up

Export Citation Format

Share Document