scholarly journals Investigation on the performance evaluation of vertical subsurface flow constructed wetland for the treatment of rural wastewater

Author(s):  
R. Shruthi ◽  
G. P. Shivashankara

Abstract In rural country like India, low cost and decentralized treatment unit like vertical subsurface flow constructed wetland (VSSF CW) can be reflected as a novel wastewater system. In this concern a pilot-scale VSSF CW unit of size 0.92 m × 0.92 m × 0.85 m bed planted with a Typha latifolia and Phragmites australis was operated for a 12-month duration to treat the simulated rural wastewater. During the operation, a constant head arrangement was done to maintain a continuous flow to achieve 5 different Hydraulic Retention Time (HRT) of 2, 4, 6, 8 and 10 days in each seasons such as winter, summer and rainy to investigate the performance of unit under different retention time. Reactor showed optimum removal efficiency at 6 days HRT at 12.5 cm/day Hydraulic Loading Rate (HLR) for organic matter removal. Both macrophytes and microbial biomass of filter media were effectively treated the rural wastewater. Average removal efficiency of the reactor during entire study were 64.73%–88.80% for Chemical Oxygen Demand, 74.96%–95.34% for Biochemical Oxygen Demand, 40.13%–79.45% for Ammonia Nitrogen, 25.36%–65.65% for Total Kjeldahl Nitrogen, 22.86%–58.48% for Phosphate phosphorus, 23.50%–55.45% for Total phosphorous, 74.91%–98.59% for Faecal Coliforms and 71.14%–95.31% for Total Coliforms respectively. Two-way ANOVA followed by post hoc Tukey's test showed that HRT had a significant impact on removal efficiency but not the season. Overall performance of the unit was good and study suggested that VSSF CW can be an smart alternative technology to treat rural wastewater before the final disposal.

Author(s):  
R. Shruthi ◽  
G. P. Shivashankara

Abstract To find the effect of Hydraulic Retention Time (HRT) and seasons on the performance of horizontal subsurface flow constructed wetland (HSSF CW) in treating rural wastewater, a pilot scale unit 2.5 m × 0.4 m × 0.3 m size bed planted with a Typha latifolia and Phragmites australis was operated for a 12-month duration. During the study 2, 4, 6, 8, and 10 days of HRT were maintained in winter, summer, and rainy seasons. The removal efficiency obtained was ranges from 62.09 to 87.23% for Chemical Oxygen Demand, 69.58% to 93.32% for Biochemical Oxygen Demand5 (BOD), 31.55% to 59.89% for Ammonia Nitrogen (NH4-N), 15.18% to 52.90% for Total Kjeldahl Nitrogen (TKN), 21.02% to 50.21% for Phosphate Phosphorus (PO43− P), 19.82% to 48.23% for, Total phosphorus (TP), 74.93% to 93.10% for Faecal Coliform (FC) and 69.93% to 90.23% Total Coliform (TC). Overall, results showed that the performance of the unit was good. For statistical analysis two way ANOVA test followed by the Tukey test was used with a 95% level of significance. It was observed that the removal efficiency of the pollutants were increased with an increase in HRT. HRT of 6 days found as adequate for significant removal of organic matter (COD and BOD). Seasonal removal efficiencies followed the order of summer > rainy > winter for all the parameters, but the difference was not statistically significant.


2010 ◽  
Vol 37 (3) ◽  
pp. 496-501 ◽  
Author(s):  
K.N. Njau ◽  
M. Renalda

A horizontal subsurface flow constructed wetland (HSSFCW) was employed to remove tannins from the effluent of a tannins extracting company. Two HSSFCW cells with hydraulic retention time (HRT) of 9 d and packed with limestone were used. One cell without macrophytes was used as a control, while the second cell was planted with Phragmites mauritianus . Results indicated that HSSFCW was capable of treating tannin wastewater that has been seeded with primary facultative pond sludge. Tannins and chemical oxygen demand (COD) removal efficiency of 95.9% and 90.6% with outlet concentration of 27 mg/L and 86 mg/L, respectively, were obtained in the planted cell; while the tannins and COD removal efficiency of 91.1% and 89.5% with outlet concentration of 57 mg/L and 96 mg/L, respectively, were obtained in the control cell.


Author(s):  
Isabela Pires da Silva ◽  
Gabriela Barbosa da Costa ◽  
João Gabriel Thomaz Queluz ◽  
Marcelo Loureiro Garcia

   This study evaluated the effect of hydraulic retention time on chemical oxygen demand (COD) and total nitrogen (TN) removal in an intermittently aerated constructed wetlands. Two horizontal subsurface-flow constructed wetlands were used: one without aeration and the other aerated intermittently (1 hour with aeration/7 hours without aeration). Both systems were evaluated treating domestic wastewater produced synthetically. The flow rate into the two CWs was 8.6 L day-1 having a hydraulic retention time of 3 days. The results show that the intermittently aerated constructed wetland were highly efficient in removing COD (98.25%), TN (83.60%) and total phosphorus (78.10%), while the non-aerated constructed wetland showed lower efficiencies in the removal of COD (93.89%), TN (48.60%) and total phosphorus (58.66). These results indicate, therefore, that intermittent aeration allows the simultaneous occurrence of nitrification and denitrification processes, improving the removal of TN in horizontal subsurface-flow constructed wetlands. In addition, the use of intermittent aeration also improves the performance of constructed wetlands in removing COD and total phosphorus.


2020 ◽  
Author(s):  
Linda Grinberga ◽  
Ainis Lagzdins

<p>This study includes water quality monitoring data obtained since June, 2014 at the farm located in the middle part of Latvia. The water treatment system with two separate constructed wetlands was established to improve water quality in agricultural area. A surface flow constructed wetland received drainage runoff from the agricultural catchment basin. A subsurface flow constructed wetland was implemented to retain nutrients from the surface runoff collected in the area of impermeable pavements of the farmyard. As there are no other specific calculations recommended for the designing of constructed wetlands in Latvia, both wetlands were calculated basing on the surface area of the constructed wetland/catchment area ratio. The surface area of the subsurface flow constructed wetland was deigned by 1.2% of the catchment area and the ratio was 0.5 % for the surface flow constructed wetland.</p><p>Water samples were collected manually by grab sampling method once or twice per month basing on a flowrate. Water quality parameters such as total suspended solids (TSS), nitrate-nitrogen (NO3-N), ammonium-nitrogen (NH4-N), total nitrogen (TN), orthophosphate-phosphorus (PO4-P), and total phosphorus (TP), biochemical oxygen demand (BOD) and chemical oxygen demand (COD) were analysed to monitor the performance of both wetlands. The concentrations at the inlet and outlet were compared to evaluate the efficiency of the water treatment.</p><p>The concentrations of NO3-N, NH4-N and TN were reduced on average by 21 %, 35 % and 20 %, respectively for the surface flow constructed wetland. PO4-P and TP concentrations were reduced on average by 31 % and 45 %, respectively for the surface flow constructed wetland. Total suspended solids were reduced by 17% at the outlet of the surface flow constructed wetland. However, in some cases, an increase in nutrient concentrations in water leaving the wetland was observed. The study showed the constant reduction of the PO4-P and TP concentrations 82 % and 83 %, respectively in the subsurface flow constructed wetland. The concentrations of NO3-N, NH4-N and TN were reduced on average by 14 %, 66 % and 53 %, respectively for the subsurface flow constructed wetland. BOD and COD reduction on average by 93 % and 83 %, respectively in for the subsurface flow constructed wetland indicated the ability of the treatment system to be adapted for wastewater treatment with high content of organic matter under the given climate conditions. This study outlined that the farmyards should receive a special attention regarding surface runoff management.</p>


2014 ◽  
Vol 1073-1076 ◽  
pp. 965-969 ◽  
Author(s):  
Ahmed Mohammed Osman ◽  
Xi Wu Lu

In this study, the performance treatment of horizontal subsurface flow constructed wetland (HSFCW) was evaluated. The HSFCW built as a tertiary treatment process after the biological reactors to improve the effluent quality. The HSFCW system was operated with different hydraulic loading rates (HLRs) ranged from 0.15 to 0.333 m3/ (m2.d) to assess their influence on removal efficiency. During the system operation time, the average temperature was ranged of 22.3 to 31.2 °C and pH ranges was 7.3 – 8.1. The Ipomoea aquatica (Chinese spinach) planted into HSFCW system and the growth parameters during the experimental operation observed. The Ipomoea aquatica growth parameters such as the plant height, a fresh and dry weights were monitored and measured. The influent and effluent of chemical oxygen demand (COD), ammonium nitrogen (NH4-N), total nitrogen (TN) and total phosphorus (TP) were examined. The removal efficiency for all parameters showed decreased with an increase in HLR from 0.15 to 0.333 m3/ (m2.day). The results demonstrated that the average removal efficiency of the COD, NH4-N, TN and TP during system operation is 52.9%, 64.6%, 58.2% and 72.8% respectively. These results confirm that the HSFCW has a good efficient in treatment and can be used for the nutrients and organic matter removal from the domestic wastewater.


2011 ◽  
Vol 71-78 ◽  
pp. 2852-2855
Author(s):  
Kun Shi ◽  
Ming Zou

The microcosm tests were done to estimated the HRT (Hydraulic Retention Time) and removal efficiency of reflowing treatment of the landfill leachate collected from Dalian Maoyingzi Municipal Solid Waste Landfill, which contained high levels of COD (Chemical Oxygen Demand, 38400 mg/L) and SS (Suspended Solids, 650 mg/L) by the reed constructed wetland located in the south area of Dalian Jiaotong University. The results showed that: (1) The HRT in nature soil cuboids were significant shorter than those in sieved soil cuboids (P<0.01); (2) The removal efficiency among the output water with the trend as follows: Preferential flow (53.9%)<Percolating water (59.2%)<Reflowing water (63.3%); (3) The COD and SS were decreased from 38400 and 650 mg/L to 14080 and 213 mg/L by the way of reflowing with the HSL (Hydraulic Surface Loading) of 0.16 m3/(m2·d) by reflowing (Removal efficiency: COD: 63.3%; SS: 67.3%).


Sign in / Sign up

Export Citation Format

Share Document