scholarly journals EXPERIMENTAL STUDY ON DRYING SHRINKAGE OF STRUCTURAL LIGHTWEIGHT CONCRETE USING FLY ASH CENOSPHERES

2021 ◽  
Vol 21 (87) ◽  
Author(s):  
Le Viet Hung
Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 333
Author(s):  
Muhammad Zahid ◽  
Nasir Shafiq

This paper presents the results of an experimental study that investigated the effects of two parameters: sand/fly ash (S/FA) ratio and water to geopolymer-solid (W/GS) ratio on the engineered geopolymer composite. The trial mix designs were optimized using the response surface method. These parameters influence the properties of the fresh and hardened geopolymer matrix, such as slump flow, compressive strength, flexural strength, elastic modulus, flexural toughness, ductility index and drying shrinkage. The optimizing process was conducted by developing statistical models using the response surface methodology (RSM) technique. The developed models were statistically validated and could be used to determine the desired response of engineered geopolymer composite (EGC) with a significance level of more than 95%. In this study, the optimized values of the S/FA ratio and W/GS ratio were obtained as 0.341701 and 0.225184, respectively. To validate the optimized S/FA ratio and W/GS ratio, an experimental study was performed, and a difference of less than 5% was found between predicted and experimental results.


2021 ◽  
Vol 72 (4) ◽  
pp. 477-485
Author(s):  
Chi Dang Thuy

Cement-based grouts are widely used thanks to its outstanding features such as high workability, non-separation, non-bleeding, easy to fulfill small gaps with complex shapes. This paper descrcibes the first phase of a series of laboratory experiments that examined the ability of production of self - levelling mortar at the University of Transport and Communications. The Portland cement-based grout incorporated superplasticizer, fly ash, fine aggregate, water along with expansion agent to match as closed as possible the given high strength non-shrink grout. The experimental study focused on the performance of non-shrink grouts regarding the flowability, expansion and bleeding, strengths and drying shrinkage of the test grout mixtures. The high range water reducer (HRWR) at dosage of 1% by weight of cement was used as a flowability modifying chemical admixture to prevent water segregation and leads to an increase in compressive strength. The parameter tests consist of water-cement ratios, and fixed dosages of superplasticizer and expansive agent. To examine the flowability of grout mortars, the flow cone test was applied. The flow cone test result indicated that there were three proportional of grouts that can meet the requirement of fluidity. The compressive strength of specimens was tested according to ASTM C349-14. It was concluded that the compositions of grouts at a water-cement ratio of from 0.29 to 0.33 have compressive strengths greater than 60 MPa. The tested specimens using the expansive agent with the dosage recommended by the manufacturer meet the non-shrinkage requirement of a grout. The experimental results have demonstrated the ability of production of high strength non-shrink grouts.


2012 ◽  
Vol 2012 ◽  
pp. 1-14
Author(s):  
Yuanchen Guo ◽  
Xue Wang

On the basis of basic law in AASHTO2007 model, the forecasting mathematical model of drying shrinkage of recycled aggregate concrete (RAC) is established by regression analysis and experimental study. The research results show that (1) with the replacement rate of RCA increases, the drying shrinkage value of RAC increases; this trend is even more obvious in the early drying time. (2) The addition of fly ash can inhibit the drying shrinkage of RAC, but the effect is not very obvious. Specifically, the addition of fly ash will increase the shrinkage to some extent when the mixing amount is 20%. (3) The addition of expansive agent can obviously inhibit the shrinkage of RAC; the inhibition affection is better than that of fly ash. (4) The forecasting mathematical models of drying shrinkage of RAC established in this paper have high accuracy and rationality according to experiment validation and error analysis.


2016 ◽  
Vol 4 (2) ◽  
pp. 19
Author(s):  
MENEZES CRAIG ◽  
RATHOD AJIT P ◽  
WASEWAR KAILAS L. ◽  
◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document