scholarly journals Faraday magnetometer with justified coordination of the field gradient stability zone

Author(s):  
Anna Aleksandrovna Sandulyak ◽  
◽  
Aleksandr Vasilievich Sandulyak ◽  
Maria Nikolaevna Polismakova ◽  
Dmitry Olegovich Kiselev ◽  
...  
Author(s):  
D.J. Meyerhoff

Magnetic Resonance Imaging (MRI) observes tissue water in the presence of a magnetic field gradient to study morphological changes such as tissue volume loss and signal hyperintensities in human disease. These changes are mostly non-specific and do not appear to be correlated with the range of severity of a certain disease. In contrast, Magnetic Resonance Spectroscopy (MRS), which measures many different chemicals and tissue metabolites in the millimolar concentration range in the absence of a magnetic field gradient, has been shown to reveal characteristic metabolite patterns which are often correlated with the severity of a disease. In-vivo MRS studies are performed on widely available MRI scanners without any “sample preparation” or invasive procedures and are therefore widely used in clinical research. Hydrogen (H) MRS and MR Spectroscopic Imaging (MRSI, conceptionally a combination of MRI and MRS) measure N-acetylaspartate (a putative marker of neurons), creatine-containing metabolites (involved in energy processes in the cell), choline-containing metabolites (involved in membrane metabolism and, possibly, inflammatory processes),


2019 ◽  
Author(s):  
Benjamin Egleston ◽  
Konstantin V. Luzyanin ◽  
Michael C. Brand ◽  
Rob Clowes ◽  
Michael E. Briggs ◽  
...  

Control of pore window size is the standard approach for tuning gas selectivity in porous solids. Here, we present the first example where this is translated into a molecular porous liquid formed from organic cage molecules. Reduction of the cage window size by chemical synthesis switches the selectivity from Xe-selective to CH<sub>4</sub>-selective, which is understood using <sup>129</sup>Xe, <sup>1</sup>H, and pulsed-field gradient NMR spectroscopy.


2019 ◽  
Author(s):  
Benjamin Egleston ◽  
Konstantin V. Luzyanin ◽  
Michael C. Brand ◽  
Rob Clowes ◽  
Michael E. Briggs ◽  
...  

Control of pore window size is the standard approach for tuning gas selectivity in porous solids. Here, we present the first example where this is translated into a molecular porous liquid formed from organic cage molecules. Reduction of the cage window size by chemical synthesis switches the selectivity from Xe-selective to CH<sub>4</sub>-selective, which is understood using <sup>129</sup>Xe, <sup>1</sup>H, and pulsed-field gradient NMR spectroscopy.


Author(s):  
Luis Espath ◽  
Victor Calo

AbstractWe propose a phase-field theory for enriched continua. To generalize classical phase-field models, we derive the phase-field gradient theory based on balances of microforces, microtorques, and mass. We focus on materials where second gradients of the phase field describe long-range interactions. By considering a nontrivial interaction inside the body, described by a boundary-edge microtraction, we characterize the existence of a hypermicrotraction field, a central aspect of this theory. On surfaces, we define the surface microtraction and the surface-couple microtraction emerging from internal surface interactions. We explicitly account for the lack of smoothness along a curve on surfaces enclosing arbitrary parts of the domain. In these rough areas, internal-edge microtractions appear. We begin our theory by characterizing these tractions. Next, in balancing microforces and microtorques, we arrive at the field equations. Subject to thermodynamic constraints, we develop a general set of constitutive relations for a phase-field model where its free-energy density depends on second gradients of the phase field. A priori, the balance equations are general and independent of constitutive equations, where the thermodynamics constrain the constitutive relations through the free-energy imbalance. To exemplify the usefulness of our theory, we generalize two commonly used phase-field equations. We propose a ‘generalized Swift–Hohenberg equation’—a second-grade phase-field equation—and its conserved version, the ‘generalized phase-field crystal equation’—a conserved second-grade phase-field equation. Furthermore, we derive the configurational fields arising in this theory. We conclude with the presentation of a comprehensive, thermodynamically consistent set of boundary conditions.


2021 ◽  
Vol 154 (11) ◽  
pp. 111105
Author(s):  
Teddy X. Cai ◽  
Nathan H. Williamson ◽  
Velencia J. Witherspoon ◽  
Rea Ravin ◽  
Peter J. Basser

Sign in / Sign up

Export Citation Format

Share Document