INVESTIGATION OF THE INFLUENCE OF PLASTIC DEFORMATIONS IN MODELING THE STRESS-STRAIN STATE OF A FLEXIBLE FILAMENT

Author(s):  
D. A. Tarasov ◽  
◽  
A. V. Lipov ◽  
A. M. Irishkov ◽  
◽  
...  
Vestnik MGSU ◽  
2016 ◽  
pp. 28-38
Author(s):  
Ilshat Talgatovich Mirsayapov

The author offer transforming the diagram of ideal elastic-plastic deformations for the description of the stress-strain state of embedment of reinforcement behind a critical inclined crack at repeatedly repeating loadings. The endurance limit of the adhesion between concrete and reinforcement and its corresponding displacements in case of repeated loadings are accepted as the main indicators. This adhesion law is the most appropriate for the description of physical and mechanical phenomena in the contact zone in case of cyclic loading, because it simply and reliably describes the adhesion mechanism and the nature of the deformation, and greatly simplifies the endurance calculations compared to the standard adhesion law. On the basis of this diagram the author obtained the equations for the description of the distribution of pressures and displacements after cyclic loading with account for the development of deformations of cyclic creep of the concrete under the studs of reinforcement.


2019 ◽  
Vol 27 (4) ◽  
pp. 488-503
Author(s):  
Alexandr Anatolyevich Treschev ◽  
Alexander Anatolyevich Bobryshev ◽  
Victor Grigoryevich Telichko ◽  
Lenar Nurgaleevich Shafigullin ◽  
Alexander Valeryevich Bashkatov

In this article, the construction of finite-elemental model of definition of stress-strain state of reinforced concrete plates in conditions of active deformation and simple loading in combination with long-term influence of chloride-containing operating environment. Non-linear behavior of concrete is simulated based on the determining relations proposed by Treschev, cracking and plastic deformations in armature are taken into account. The impact of the aggressive environment is taken into account in accordance with the model proposed by Petrov and Penina. In the article all basic correlations of finite elements method in convenient for software realization on a computer are given. As the object of research for this article is a concrete plate reinforced with steel reinforcement in a stretched area, which is under the joint influence of mechanical load and aggressive chloride-containing environment on the protective polymer–concrete layer. The load was taken evenly distributed across the entire slab area. At the solution of this problem the non-linear sensitivity of the basic material (concrete) to the type of the tense condition, plastic deformations in armature, degradation of a protective concrete at influence of external aggressive environment are taken into account. In the article some especially characteristic results of mathematical modeling of the specified model problem are given. The obtained results of joint influence on the plate of mechanical load and aggressive environment are analyzed.


Author(s):  
Andrey Grabovskiy ◽  
Mykola M. Tkachuk ◽  
Anton Zavorotnii ◽  
Serhii Kutsenko S ◽  
Mariia Saverska ◽  
...  

Torsion shafts are the main elastic element of the suspension systems of a large number of vehicles. To simulate their reaction to the action of torque, the stress-strain state is analyzed taking into account the contact interaction with the spline sleeve. The features of the distribution of contact pressure between these bodies are established. The nature of stress concentration in the splined hollows of the shaft head is determined. Models and research methods have been developed that make it possible to develop recommendations for design decisions in the design of vehicle suspension systems. The factors are determined that ensure the strength of the torsion shaft at the values of its head diameters close to the diameters of the torsion shaft stem. In the case under consideration, this factor is firstly strength of the torsion shaft head. In particular, it was found that during manufacturing operations there are significant plastic deformations and contact loads in the heads of torsion shafts. This factor is decisive in substantiating the design parameters of torsion shafts. Keywords: torsion shaft; contact interaction; stress-strain state; elastically plastic deformation; suspension system


2011 ◽  
Vol 17 (4) ◽  
pp. 558-568 ◽  
Author(s):  
Romanas Karkauskas ◽  
Michail Popov

The establishment of the real stress-strain state of the structure is one of the most important problems for designing and undertaking the reconstruction of building constructions as well as making calculations for the purpose of optimizing cross-sections of various structural elements. This task can be achieved by analysing the structure as a geometrically nonlinear system (refusing an assumption of small displacements) and taking into consideration plastic deformations. Modern computer technologies and mathematical tools enable us to perform strength analysis of space structures and to increase the accuracy of stress-strain state analysis. The present paper develops a technique for constructing a finite element tangent matrix for the nonlinear analysis of the space frame structure aimed at determining plastic deformations. The mathematical models of the problems based on static and kinematic formulations using the dual theory of mathematical programming were created for analysis. Strength conditions presented in construction codes and specifications AISCLRFD and suggested by other researchers (e.g. Orbison's strength conditions) are used in the formulations of the analysed problems. The mathematical models of the considered problems are tested by calculating a two-storied space frame. The results of the performed analysis are compared with data obtained within the studies conducted by other researchers. Santrauka Projektuojant ar rekonstruojant konstrukcijas, atliekant jos elementų skerspjūvių optimizavimo skaičiavimus, vienas iš svarbiausių uždavinių – konstrukcijos tikrojo įtempto deformuoto būvio (ĮDB) nustatymas. Tai galima pasiekti atliekant konstrukcijos kaip geometriškai netiesinės sistemos (atsisakant mažų poslinkių prielaidos) analizę, įvertinant plastines deformacijas. Taikant šiuolaikines kompiuterines technologijas ir matematinį aparatą, tapo įmanoma vykdyti erdvinės konstrukcijos stiprumo analizę ir padidinti konstrukcijos ĮDB analizės tikslumą. Tuo tikslu šiame darbe toliau plėtojama tangentinės standumo matricos sudarymo metodika erdvinės rėminės konstrukcijos netiesinei analizei, įvertinant plastines deformacijas. Naudojant matematinio programavimo dualumo teoriją sudaryti analizės statinės ir kinematinės formuluočių uždavinių matematiniai modeliai. Naudojamos AISC-LRFD normatyviniuose dokumentuose pateiktos ir kitų autorių (pavyzdžiui, Orbison) pasiūlytos stiprumo sąlygos. Suformuluoti analizės uždavinių matematiniai modeliai buvo aprobuoti skaičiuojant dviejų aukštų erdvinį rėmą. Gauti analizės rezultatai palyginti su eksperimentiniais ir kitų autorių analitiniais rezultatais.


Author(s):  
А. Г. Гребеников ◽  
И. В. Малков ◽  
В. А. Урбанович ◽  
Н. И. Москаленко ◽  
Д. С. Колодийчик

The analysis of the design and technological features of the tail boom (ТB) of a helicopter made of polymer composite materials (PCM) is carried out.Three structural and technological concepts are distinguished - semi-monocoque (reinforced metal structure), monocoque (three-layer structure) and mesh-type structure. The high weight and economic efficiency of mesh structures is shown, which allows them to be used in aerospace engineering. The physicomechanical characteristics of the network structures are estimated and their uniqueness is shown. The use of mesh structures can reduce the weight of the product by a factor of two or more.The stress-strain state (SSS) of the proposed tail boom design is determined. The analysis of methods for calculating the characteristics of the total SSS of conical mesh shells is carried out. The design of the tail boom is presented, the design diagram of the tail boom of the transport category rotorcraft is developed. A finite element model was created using the Siemens NX 7.5 system. The calculation of the stress-strain state (SSS) of the HC of the helicopter was carried out on the basis of the developed structural scheme using the Advanced Simulation module of the Siemens NX 7.5 system. The main zones of probable fatigue failure of tail booms are determined. Finite Element Analysis (FEA) provides a theoretical basis for design decisions.Shown is the effect of the type of technological process selected for the production of the tail boom on the strength of the HB structure. The stability of the characteristics of the PCM tail boom largely depends on the extent to which its design is suitable for the use of mechanized and automated production processes.A method for the manufacture of a helicopter tail boom from PCM by the automated winding method is proposed. A variant of computer modeling of the tail boom of a mesh structure made of PCM is shown.The automated winding technology can be recommended for implementation in the design of the composite tail boom of the Mi-2 and Mi-8 helicopters.


Sign in / Sign up

Export Citation Format

Share Document