scholarly journals Cyber Security Audit and Attack Detection Toolkit

2012 ◽  
Author(s):  
Dale Peterson

2013 ◽  
Vol 21 (5) ◽  
pp. 1679-1693 ◽  
Author(s):  
Saurabh Amin ◽  
Xavier Litrico ◽  
S. Shankar Sastry ◽  
Alexandre M. Bayen


Author(s):  
Petros Lois ◽  
George Drogalas ◽  
Alkiviadis Karagiorgos ◽  
Alkis Thrassou ◽  
Demetris Vrontis


2015 ◽  
Vol 48 ◽  
pp. 51-61 ◽  
Author(s):  
Noam Ben-Asher ◽  
Cleotilde Gonzalez


Drones ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 8
Author(s):  
Elena Basan ◽  
Alexandr Basan ◽  
Alexey Nekrasov ◽  
Colin Fidge ◽  
Nikita Sushkin ◽  
...  

Here, we developed a method for detecting cyber security attacks aimed at spoofing the Global Positioning System (GPS) signal of an Unmanned Aerial Vehicle (UAV). Most methods for detecting UAV anomalies indicative of an attack use machine learning or other such methods that compare normal behavior with abnormal behavior. Such approaches require large amounts of data and significant “training” time to prepare and implement the system. Instead, we consider a new approach based on other mathematical methods for detecting UAV anomalies without the need to first collect a large amount of data and describe normal behavior patterns. Doing so can simplify the process of creating an anomaly detection system, which can further facilitate easier implementation of intrusion detection systems in UAVs. This article presents issues related to ensuring the information security of UAVs. Development of the GPS spoofing detection method for UAVs is then described, based on a preliminary study that made it possible to form a mathematical apparatus for solving the problem. We then explain the necessary analysis of parameters and methods of data normalization, and the analysis of the Kullback—Leibler divergence measure needed to detect anomalies in UAV systems.



Author(s):  
Darshan Mansukhbhai Tank ◽  
Akshai Aggarwal ◽  
Nirbhay Kumar Chaubey

Cybercrime continues to emerge, with new threats surfacing every year. Every business, regardless of its size, is a potential target of cyber-attack. Cybersecurity in today's connected world is a key component of any establishment. Amidst known security threats in a virtualization environment, side-channel attacks (SCA) target most impressionable data and computations. SCA is flattering major security interests that need to be inspected from a new point of view. As a part of cybersecurity aspects, secured implementation of virtualization infrastructure is very much essential to ensure the overall security of the cloud computing environment. We require the most effective tools for threat detection, response, and reporting to safeguard business and customers from cyber-attacks. The objective of this chapter is to explore virtualization aspects of cybersecurity threats and solutions in the cloud computing environment. The authors also discuss the design of their novel ‘Flush+Flush' cache attack detection approach in a virtualized environment.



Author(s):  
Darshan Mansukhbhai Tank ◽  
Akshai Aggarwal ◽  
Nirbhay Kumar Chaubey

Cybercrime continues to emerge, with new threats surfacing every year. Every business, regardless of its size, is a potential target of cyber-attack. Cybersecurity in today's connected world is a key component of any establishment. Amidst known security threats in a virtualization environment, side-channel attacks (SCA) target most impressionable data and computations. SCA is flattering major security interests that need to be inspected from a new point of view. As a part of cybersecurity aspects, secured implementation of virtualization infrastructure is very much essential to ensure the overall security of the cloud computing environment. We require the most effective tools for threat detection, response, and reporting to safeguard business and customers from cyber-attacks. The objective of this chapter is to explore virtualization aspects of cybersecurity threats and solutions in the cloud computing environment. The authors also discuss the design of their novel ‘Flush+Flush' cache attack detection approach in a virtualized environment.



2018 ◽  
Vol 12 (4) ◽  
pp. 15-28 ◽  
Author(s):  
Ayei E. Ibor ◽  
Florence A. Oladeji ◽  
Olusoji B. Okunoye


Author(s):  
Noor Syahirah Nordin ◽  
Mohd Arfian Ismail ◽  
Tole Sutikno ◽  
Shahreen Kasim ◽  
Rohayanti Hassan ◽  
...  

<div>Phishing attack is a well-known cyber security attack that happens to many people around the world. The increasing and never-ending case of phishing attack has led to more automated approaches in detecting phishing attack. One of the methods is applying fuzzy system. Fuzzy system is a rule-based system that utilize fuzzy sets and fuzzy logic concept to solve problems. However, it is hard to achieve optimal solution when applied to complex problem where the process of identify the fuzzy parameter becomes more complicated. To cater this issue, an optimization method is needed to identify the parameter of fuzzy automatically. The optimization method derives from the metaheuristic algorithm. Therefore, the aim of this study is to make a comparative analysis between the metaheuristic algorithms in fuzzy modelling. The study was conducted to analyse which algorithm performed better when applied in two datasets: website phishing dataset (WPD) and phishing websites dataset (PWD). Then the results were obtained to show the performance of every metaheuristic algorithm in terms of convergence speed and four metrics including accuracy, recall, precision, and f-measure. </div>



Author(s):  
Daniel Kobla Gasu

The internet has become an indispensable resource for exchanging information among users, devices, and organizations. However, the use of the internet also exposes these entities to myriad cyber-attacks that may result in devastating outcomes if appropriate measures are not implemented to mitigate the risks. Currently, intrusion detection and threat detection schemes still face a number of challenges including low detection rates, high rates of false alarms, adversarial resilience, and big data issues. This chapter describes a focused literature survey of machine learning (ML) and data mining (DM) methods for cyber analytics in support of intrusion detection and cyber-attack detection. Key literature on ML and DM methods for intrusion detection is described. ML and DM methods and approaches such as support vector machine, random forest, and artificial neural networks, among others, with their variations, are surveyed, compared, and contrasted. Selected papers were indexed, read, and summarized in a tabular format.



Sign in / Sign up

Export Citation Format

Share Document