scholarly journals Large Scale Production Computing and Storage Requirements for High Energy Physics: Target 2017

2013 ◽  
Author(s):  
Richard Gerber
2020 ◽  
Vol 245 ◽  
pp. 07036
Author(s):  
Christoph Beyer ◽  
Stefan Bujack ◽  
Stefan Dietrich ◽  
Thomas Finnern ◽  
Martin Flemming ◽  
...  

DESY is one of the largest accelerator laboratories in Europe. It develops and operates state of the art accelerators for fundamental science in the areas of high energy physics, photon science and accelerator development. While for decades high energy physics (HEP) has been the most prominent user of the DESY compute, storage and network infrastructure, various scientific areas as science with photons and accelerator development have caught up and are now dominating the demands on the DESY infrastructure resources, with significant consequences for the IT resource provisioning. In this contribution, we will present an overview of the computational, storage and network resources covering the various physics communities on site. Ranging from high-throughput computing (HTC) batch-like offline processing in the Grid and the interactive user analyses resources in the National Analysis Factory (NAF) for the HEP community, to the computing needs of accelerator development or of photon sciences such as PETRA III or the European XFEL. Since DESY is involved in these experiments and their data taking, their requirements include fast low-latency online processing for data taking and calibration as well as offline processing, thus high-performance computing (HPC) workloads, that are run on the dedicated Maxwell HPC cluster. As all communities face significant challenges due to changing environments and increasing data rates in the following years, we will discuss how this will reflect in necessary changes to the computing and storage infrastructures. We will present DESY compute cloud and container orchestration plans as a basis for infrastructure and platform services. We will show examples of Jupyter notebooks for small scale interactive analysis, as well as its integration into large scale resources such as batch systems or Spark clusters. To overcome the fragmentation of the various resources for all scientific communities at DESY, we explore how to integrate them into a seamless user experience in an Interdisciplinary Data Analysis Facility.


2004 ◽  
Vol 13 (03) ◽  
pp. 391-502 ◽  
Author(s):  
MASSIMO GIOVANNINI

Cosmology, high-energy physics and astrophysics are today converging to the study of large scale magnetic fields. While the experimental evidence for the existence of large scale magnetization in galaxies, clusters and super-clusters is rather compelling, the origin of the phenomenon remains puzzling especially in light of the most recent observations. The purpose of the present review is to describe the physical motivations and the open theoretical problems related to the existence of large scale magnetic fields.


2019 ◽  
Vol 7 (2) ◽  
pp. 147-161 ◽  
Author(s):  
Maria L.A.D. Lestari ◽  
Rainer H. Müller ◽  
Jan P. Möschwitzer

Background: Miniaturization of nanosuspensions preparation is a necessity in order to enable proper formulation screening before nanosizing can be performed on a large scale. Ideally, the information generated at small scale is predictive for large scale production. Objective: This study was aimed to investigate the scalability when producing nanosuspensions starting from a 10 g scale of nanosuspension using low energy wet ball milling up to production scales of 120 g nanosuspension and 2 kg nanosuspension by using a standard high energy wet ball milling operated in batch mode or recirculation mode, respectively. Methods: Two different active pharmaceutical ingredients, i.e. curcumin and hesperetin, have been used in this study. The investigated factors include the milling time, milling speed, and the type of mill. Results: Comparable particle sizes of about 151 nm to 190 nm were obtained for both active pharmaceutical ingredients at the same milling time and milling speed when the drugs were processed at 10 g using low energy wet ball milling or 120 g using high energy wet ball milling in batch mode, respectively. However, an adjustment of the milling speed was needed for the 2 kg scale produced using high energy wet ball milling in recirculation mode to obtain particle sizes comparable to the small scale process. Conclusion: These results confirm in general, the scalability of wet ball milling as well as the suitability of small scale processing in order to correctly identify the most suitable formulations for large scale production using high energy milling.


2005 ◽  
Vol 20 (14) ◽  
pp. 3021-3032
Author(s):  
Ian M. Fisk

In this review, the computing challenges facing the current and next generation of high energy physics experiments will be discussed. High energy physics computing represents an interesting infrastructure challenge as the use of large-scale commodity computing clusters has increased. The causes and ramifications of these infrastructure challenges will be outlined. Increasing requirements, limited physical infrastructure at computing facilities, and limited budgets have driven many experiments to deploy distributed computing solutions to meet the growing computing needs for analysis reconstruction, and simulation. The current generation of experiments have developed and integrated a number of solutions to facilitate distributed computing. The current work of the running experiments gives an insight into the challenges that will be faced by the next generation of experiments and the infrastructure that will be needed.


2021 ◽  
Vol 8 (3) ◽  
pp. 20210304
Author(s):  
Semyon Bachinin ◽  
Venera Gilemkhanova ◽  
Maria Timofeeva ◽  
Yuliya Kenzhebayeva ◽  
Andrei Yankin ◽  
...  

Metal-organic frameworks (MOFs), being a family of highly crystalline and porous materials, have attracted particular attention in material science due to their unprecedented chemical and structural tunability. Next to their application in gas adsorption, separation, and storage, MOFs also can be utilized for energy transfer and storage in batteries and supercapacitors. Based on recent studies, this review describes the latest developments about MOFs as structural elements of metal-ion battery with a focus on their industry-oriented and large-scale production.


2021 ◽  
Vol 703 (1) ◽  
pp. 012034
Author(s):  
L Ahonen ◽  
J Hietava ◽  
K Korhonen ◽  
A Martinkauppi ◽  
K Piipponen

2005 ◽  
Vol 50 (S1) ◽  
pp. S116-S121 ◽  
Author(s):  
S. Ya. Beloglovsky ◽  
S. F. Burachas ◽  
N. A. Vassilieva ◽  
M. K. Ziomko ◽  
S. V. Lysov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document