scholarly journals Volumetrically Absorbing Thermal Insulator (VATI) for Hightemperature Receivers

2021 ◽  
Author(s):  
Sameer Rao ◽  
Mathieu Francoeur ◽  
Keunhan Park
Keyword(s):  
2021 ◽  
Vol 13 (13) ◽  
pp. 7484
Author(s):  
Gabriel Fernando García Sánchez ◽  
Rolando Enrique Guzmán López ◽  
Roberto Alonso Gonzalez-Lezcano

Buildings consume a large amount of energy during all stages of their life cycle. One of the most efficient ways to reduce their consumption is to use thermal insulation materials; however, these generally have negative effects on the environment and human health. Bio-insulations are presented as a good alternative solution to this problem, thus motivating the study of the properties of natural or recycled materials that could reduce energy consumption in buildings. Fique is a very important crop in Colombia. In order to contribute to our knowledge of the properties of its fibers as a thermal insulator, the measurement of its thermal conductivity is reported herein, employing equipment designed according to the ASTM C 177 standard and a kinetic study of its thermal decomposition from thermogravimetric data through the Coats–Redfern model-fitting method.


2019 ◽  
Vol 11 (17) ◽  
pp. 15795-15803 ◽  
Author(s):  
Lei Su ◽  
Mingzhu Li ◽  
Hongjie Wang ◽  
Min Niu ◽  
De Lu ◽  
...  

2019 ◽  
Vol 1173 ◽  
pp. 012012
Author(s):  
K Janampa ◽  
O Ceron ◽  
O Morales ◽  
J Ore
Keyword(s):  

2015 ◽  
Vol 1758 ◽  
Author(s):  
Nicholas W. Piekiel ◽  
Christopher J. Morris ◽  
Wayne A. Churaman ◽  
David M. Lunking

ABSTRACTThe present study explores the burning of microscale porous silicon channels with sodium perchlorate. These on-chip porous silicon energetics were embedded in crystalline silicon, and therefore surrounded on three sides by an efficient thermal conductor. For slow burning systems, this presents complications as heat loss to the crystalline silicon substrate can result in inconsistent burning or flame extinction. We investigated <100 μm wide porous silicon strips, sparsely filled with sodium perchlorate (NaClO4), to probe the limits of on-chip combustion. Four different etch times were attempted to decrease the dimensions of the porous silicon strips. The smallest size achieved was 12 x 64 µm, and despite the small dimensions, demonstrated the same flame speed as the larger porous silicon strips of 6-7 m/s. We predict that unreacted porous silicon acts as a thermal insulator to aid combustion for slow burning porous silicon channels, and SEM images provide evidence to support this. We also investigated the small scale combustion of a rapidly burning sample (∼1200 m/s). Despite the rapid flame speed, the propagation followed a designed, winding flame path. The use of these small scale porous silicon samples could significantly reduce the energetic material footprint for future microscale applications.


2009 ◽  
Vol 419-420 ◽  
pp. 29-32 ◽  
Author(s):  
Tung-Hsin Yeh ◽  
Jiin Yuh Jang ◽  
Yu Bin Chen ◽  
Der Her Wang

In order to inspect on wall condition inside the coke oven, an inspection device has been developed to protect a camera inside and sustains high temperature long enough so that it can be permanently-installed on the pusher ram beam. The temperature of the coking chamber during operation is about 1200 °C while the maximum tolerable temperature of a camera is less than 40 °C. The device has to function as a good thermal insulator with cooling element for the camera at the pusher head and for signal cables along the beam. In this paper, the necessary conditions of the inspective device were found out by building a three-dimensional numerical model of the device to simulate the temperature distribution inside the device with CFD commercial software.


Sign in / Sign up

Export Citation Format

Share Document