scholarly journals Proposed stratigraphic nomenclature and macroscopic identification of lithostratigraphic units of the Paintbrush Group exposed at Yucca Mountain, Nevada

1996 ◽  
Author(s):  
D.C. Buesch ◽  
R.W. Spengler ◽  
T.C. Moyer ◽  
J.K. Geslin
2005 ◽  
Vol 7 ◽  
pp. 21-24
Author(s):  
Poul Schiøler ◽  
Jan Andsbjerg ◽  
Ole R. Clausen ◽  
Gregers Dam ◽  
Karen Dybkjær ◽  
...  

Intense drilling activity following the discovery of the Siri Field in 1995 has resulted in an improved understanding of the siliciclastic Palaeogene succession in the Danish North Sea sector (Fig. 1). Many of the new wells were drilled in the search for oil reservoirs in sand bodies of Paleocene–Eocene age. The existing lithostratigraphy was based on data from a generation of wells that were drilled with deeper stratigraphic targets, with little or no interest in the overlying Palaeogene sediments, and thus did not adequately consider the significance of the Palaeogene sandstone units in the Danish sector. In order to improve the understanding of the distribution, morphology and age of the Palaeogene sediments, in particular the economically important sandstone bodies, a detailed study of this succession in the Danish North Sea has recently been undertaken. An important aim of the project was to update the lithostratigraphic framework on the basis of the new data.The project was carried out at the Geological Survey of Denmark and Greenland (GEUS) with participants from the University of Aarhus, DONG E&P and Statoil Norway, and was supported by the Danish Energy Agency. Most scientific results cannot be released until September 2006, but a revised lithostratigraphic scheme may be published prior to that date. Formal definition of new units and revision of the lithostratigraphy are in preparation. All of the widespread Palaeogene mudstone units in the North Sea have previously been formally established in Norwegian or British wells, and no reference sections exist in the Danish sector. As the lithology of a stratigraphic unit may vary slightly from one area to another, Danish reference wells have been identified during the present project, and the lithological descriptions of the formations have been expanded to include the appearance of the units in the Danish sector. Many of the sandstone bodies recently discovered in the Danish sector have a limited spatial distribution and were sourced from other areas than their contemporaneous counterparts in the Norwegian and British sectors. These sandstone bodies are therefore defined as new lithostratigraphic units in the Danish sector, and are assigned Danish type and reference sections. There is a high degree of lithological similarity between the Palaeogene–Neogene mudstone succession from Danish offshore boreholes and that from onshore exposures and boreholes, and some of the mudstone units indeed seem identical. However, in order to acknowledge the traditional distinction between offshore and onshore stratigraphic nomenclature, the two sets of nomenclature are kept separate herein. In recent years oil companies operating in the North Sea have developed various in-house lithostratigraphic charts for the Paleocene–Eocene sand and mudstone successions in the Danish and Norwegian sectors. A number of informal lithostratigraphic units have been adopted and widely used. In the present project, these units have been formally defined and described, maintaining their original names whenever feasible, with the aim of providing an unequivocal nomenclature for the Palaeogene – lower Neogene succession in the Danish sector. It has not been the intention to establish a sequence stratigraphic model for this succession in the North Sea; the reader is referred to the comprehensive works of Michelsen (1993), Neal et al. (1994), Mudge & Bujak (1994, 1996a, b), Michelsen et al. (1995, 1998), Danielsen et al. (1997) and Rasmussen (2004).


2006 ◽  
Vol 85 (3) ◽  
pp. 221-238 ◽  
Author(s):  
O.A. Abbink ◽  
H.F. Mijnlieff ◽  
D.K. Munsterman ◽  
R.M.C.H. Verreussel

AbstractMiddle Jurassic - Early Cretaceous strata are a target for oil and gas exploration in the Dutch offshore. During the initial stages of the ‘Late Jurassic’ offshore exploration, various oil fields and a few gas fields were discovered of which only one, the F3-FB field, proved to be economically viable. In the Northern Offshore of the Netherlands, latest Middle Jurassic (Callovian) - earliest Cretaceous (Ryazanian) strata are mostly limited to the Dutch Central Graben and Terschelling basins. Outside the Dutch Central Graben and the Terschelling Basin only thin veneers of these strata occur on the fringing highs such as the Schill Grund High and the Step Graben. The geology of this non-marine to shallow marine succession is complex. The combination of lateral facies changes, repetitive log and facies characteristics in time, sea-level and climate changes, salt tectonics and structural compartmentalisation hamper straightforward seismic interpretation and log correlation. The large number of lithostratigraphic units defined in the Stratigraphic Nomenclature of the Netherlands illustrates the complexity of this time-interval.In recent years, new biostratigraphic techniques and newly acquired stratigraphic data led to the identification of a series of events which can be related to the tectonic, climatic, environmental and stratigraphic development of the ‘Late Jurassic’ in the Dutch Central Graben and Terschelling basins. Based on these data, three stratigraphic sequences can be recognized. Sequence 1 (Callovian - earliest Kimmeridgian) records the initiation of the Dutch Central Graben, Sequence 2 (early Kimmeridgian - early Portlandian) that of the initiation of the Terschelling Basin. During sequence 3 (late Portlandian - Ryazanian) the Dutch offshore was draped by a regional transgression. These insights have directly impact on the exploration potential, which is discussed in two play concepts. The first is a strat-trap play in the fluvial/paralic sediments of Sequence 1 in the lows between the graben boundary and salt domes. The second example is the Spiculite play, which comprises a bioclastic sandstone reservoir at the top of a dome with a 4-way dip closure. These two examples highlight the necessity of understanding the paleoenvironment and geography for assessing the future exploration potential.


1989 ◽  
Vol 26 (10) ◽  
pp. 2016-2031 ◽  
Author(s):  
Derek J. Thorkelson ◽  
Glenn E. Rouse

Mid-Cretaceous volcanic and volcaniclastic rocks in southwestern British Columbia, east of the Fraser Fault System, constitute two principal lithostratigraphic units. The lower unit, a composite succession of basaltic to rhyolitic lavas and various clastic rocks, is exposed in a 215 km linear belt from near Pavilion to south of Princeton. The upper unit, mostly amygdaloidal andesite, is restricted to the centre of the belt between Spences Bridge and Kingsvale, where it overlies the lower unit and contiguous basement rocks. Both units were deposited subaerially, concurrent with folding and faulting, and share a contact that varies from gradational, near Kingsvale, to unconformable, near Spences Bridge.The names "Spences Bridge Group" and "Kingsvale Group" were used by several authors for various parts of the volcanic stratigraphy. We suggest revision of nomenclature whereby the lower and upper units are named "Pimainus Formation" and "Spius Formation", respectively; together they constitute the Spences Bridge Group. The term "Kingsvale Group" is abandoned.Assemblages of fossil leaves and palynomorphs, collected from one Spius and seven Pimainus localities, include several species of early angiosperms. A late Albian age is thereby indicated for both formations; this is largely corroborated by isotopic dates from the volcanic strata and cross-cutting granitic plutons.


2021 ◽  
Vol 5 (2) ◽  
pp. 34-39
Author(s):  
Kifayat Ullah Shah ◽  
Akhtar Muhammad Kassi ◽  
Aimal Khan Kasi

The newly proposed Middle Cretaceous “Bibai Group”, named after the Bibai peak, is exposed in Kach-Ziarat, Spera Ragha-Chingun areas of the Western Sulaiman Fold-Thrust Belt, Pakistan. It comprises thick succession of the mafic volcanic rocks, volcanic conglomerate, mudstone and sandstone. The stratigraphic nomenclature proposed by previous workers was not clear enough, as they used different names for the succession, such as “Kahan Conglomerate Member” of the Mughal Kot Formation, “Parh-related volcanics” by considering it as part of the “Parh Group, “Bibai Formation” and “Bela Volcanic Group”, which were confusing and misleading. Also previous workers did not realize that the succession may be further classified into distinct mappable lithostratigraphic units and deserved the status of a “Group”. Therefore, we carefully examined and mapped the area and hereby propose the name “Bibai Group” for the overall volcanic and volcaniclastic succession of the Middle Cretaceous age. Based on distinct lithostratigraphic characters we further subdivided the “Group” into two lithostratigraphic units of formation rank, for which we propose the names “Chinjun Volcanics” and “Bibai Formation”. Also based on distinct lithostratigraphic characters we further propose to subdivide our “Babai Formation” into three lithostratigraphic units of member rank, which we named as the “Kahan Conglomerate Member”, “Ahmadun Member” and “Kach Mudstone Member”. In this paper we have defined and briefly described the Bibai Group, its constituent formations and their members. Also we examined and discussed the validity and status of the proposed subdivisions; e.g. formations and members, of the Bibai Group, and are fully satisfied that the proposed subdivisions are appropriate and comply with the Article 24 and 25 of the North American Stratigraphic Codes (2005) and that the previous nomenclatures are inconsistent, confusing and do not comply with the International Stratigraphic Codes.


1975 ◽  
Vol 12 (5) ◽  
pp. 858-872 ◽  
Author(s):  
Pierre-André Bourque

A unified stratigraphic nomenclature is proposed for Silurian and basal Devonian rocks in the eastern half of Gaspé Peninsula. The Gascons, West Point and Indian Point Formations of the Chaleurs Bay Synclinorium are extended into the northern part of Gaspé Peninsula. The term St. Léon is restricted to a sequence of mainly fine-grained sediments in which neither the West Point nor the Bouleaux is recognized. The term Lefrançois is abandoned. New lithostratigraphic units here proposed are the Anse à Pierre-Loiselle Formation in the Chaleurs Bay Synclinorium, the Ruisseau Bleau Formation and the Lac McKay Member of the St. Léon Formation in the Mount Alexandre Syncline, and the Ruisseau Louis Member of the St. Léon Formation in the Saint-Jean River Anticline and Mount Alexandre Syncline.


Author(s):  
Anthony L. Layzell ◽  
Robert S. Sawin ◽  
Rolfe D. Mandel ◽  
Greg A. Ludvigson ◽  
Evan K. Franseen ◽  
...  

This paper outlines Quaternary nomenclature changes to Zeller (1968) that have been adopted by the Kansas Geological Survey (KGS). The KGS formally recognizes two series/epochs for the Quaternary: the Holocene and Pleistocene. Pleistocene stage/age names Kansan, Aftonian, Nebraskan, and Yarmouthian are abandoned and replaced with the broader term "pre-Illinoian." Formation names Bignell, Peoria, Gilman Canyon, and Loveland are maintained for loess units. Formation names for the following alluvial lithostratigraphic units are abandoned: Crete, Sappa, Grand Island, Fullerton, and Holdrege. The Severance Formation is adopted as a new lithostratigraphic unit for thick packages of late Pleistocene alluvium and colluvium in Kansas. The DeForest Formation is accepted as a valid lithostratigraphic unit for deposits of fine-grained Holocene alluvium in Kansas. Formation names Iowa Point, Nickerson, and Cedar Bluffs for glacial tills and Atchison and David City for glaciofluvial deposits are abandoned. The Afton and Yarmouth Soils are abandoned as pedostratigraphic units, whereas the Sangamon Geosol and Brady Geosol are maintained.


Sign in / Sign up

Export Citation Format

Share Document