scholarly journals Quaternary Stratigraphy and Stratigraphic Nomenclature Revisions in Kansas

Author(s):  
Anthony L. Layzell ◽  
Robert S. Sawin ◽  
Rolfe D. Mandel ◽  
Greg A. Ludvigson ◽  
Evan K. Franseen ◽  
...  

This paper outlines Quaternary nomenclature changes to Zeller (1968) that have been adopted by the Kansas Geological Survey (KGS). The KGS formally recognizes two series/epochs for the Quaternary: the Holocene and Pleistocene. Pleistocene stage/age names Kansan, Aftonian, Nebraskan, and Yarmouthian are abandoned and replaced with the broader term "pre-Illinoian." Formation names Bignell, Peoria, Gilman Canyon, and Loveland are maintained for loess units. Formation names for the following alluvial lithostratigraphic units are abandoned: Crete, Sappa, Grand Island, Fullerton, and Holdrege. The Severance Formation is adopted as a new lithostratigraphic unit for thick packages of late Pleistocene alluvium and colluvium in Kansas. The DeForest Formation is accepted as a valid lithostratigraphic unit for deposits of fine-grained Holocene alluvium in Kansas. Formation names Iowa Point, Nickerson, and Cedar Bluffs for glacial tills and Atchison and David City for glaciofluvial deposits are abandoned. The Afton and Yarmouth Soils are abandoned as pedostratigraphic units, whereas the Sangamon Geosol and Brady Geosol are maintained.

1975 ◽  
Vol 12 (5) ◽  
pp. 858-872 ◽  
Author(s):  
Pierre-André Bourque

A unified stratigraphic nomenclature is proposed for Silurian and basal Devonian rocks in the eastern half of Gaspé Peninsula. The Gascons, West Point and Indian Point Formations of the Chaleurs Bay Synclinorium are extended into the northern part of Gaspé Peninsula. The term St. Léon is restricted to a sequence of mainly fine-grained sediments in which neither the West Point nor the Bouleaux is recognized. The term Lefrançois is abandoned. New lithostratigraphic units here proposed are the Anse à Pierre-Loiselle Formation in the Chaleurs Bay Synclinorium, the Ruisseau Bleau Formation and the Lac McKay Member of the St. Léon Formation in the Mount Alexandre Syncline, and the Ruisseau Louis Member of the St. Léon Formation in the Saint-Jean River Anticline and Mount Alexandre Syncline.


2005 ◽  
Vol 7 ◽  
pp. 21-24
Author(s):  
Poul Schiøler ◽  
Jan Andsbjerg ◽  
Ole R. Clausen ◽  
Gregers Dam ◽  
Karen Dybkjær ◽  
...  

Intense drilling activity following the discovery of the Siri Field in 1995 has resulted in an improved understanding of the siliciclastic Palaeogene succession in the Danish North Sea sector (Fig. 1). Many of the new wells were drilled in the search for oil reservoirs in sand bodies of Paleocene–Eocene age. The existing lithostratigraphy was based on data from a generation of wells that were drilled with deeper stratigraphic targets, with little or no interest in the overlying Palaeogene sediments, and thus did not adequately consider the significance of the Palaeogene sandstone units in the Danish sector. In order to improve the understanding of the distribution, morphology and age of the Palaeogene sediments, in particular the economically important sandstone bodies, a detailed study of this succession in the Danish North Sea has recently been undertaken. An important aim of the project was to update the lithostratigraphic framework on the basis of the new data.The project was carried out at the Geological Survey of Denmark and Greenland (GEUS) with participants from the University of Aarhus, DONG E&P and Statoil Norway, and was supported by the Danish Energy Agency. Most scientific results cannot be released until September 2006, but a revised lithostratigraphic scheme may be published prior to that date. Formal definition of new units and revision of the lithostratigraphy are in preparation. All of the widespread Palaeogene mudstone units in the North Sea have previously been formally established in Norwegian or British wells, and no reference sections exist in the Danish sector. As the lithology of a stratigraphic unit may vary slightly from one area to another, Danish reference wells have been identified during the present project, and the lithological descriptions of the formations have been expanded to include the appearance of the units in the Danish sector. Many of the sandstone bodies recently discovered in the Danish sector have a limited spatial distribution and were sourced from other areas than their contemporaneous counterparts in the Norwegian and British sectors. These sandstone bodies are therefore defined as new lithostratigraphic units in the Danish sector, and are assigned Danish type and reference sections. There is a high degree of lithological similarity between the Palaeogene–Neogene mudstone succession from Danish offshore boreholes and that from onshore exposures and boreholes, and some of the mudstone units indeed seem identical. However, in order to acknowledge the traditional distinction between offshore and onshore stratigraphic nomenclature, the two sets of nomenclature are kept separate herein. In recent years oil companies operating in the North Sea have developed various in-house lithostratigraphic charts for the Paleocene–Eocene sand and mudstone successions in the Danish and Norwegian sectors. A number of informal lithostratigraphic units have been adopted and widely used. In the present project, these units have been formally defined and described, maintaining their original names whenever feasible, with the aim of providing an unequivocal nomenclature for the Palaeogene – lower Neogene succession in the Danish sector. It has not been the intention to establish a sequence stratigraphic model for this succession in the North Sea; the reader is referred to the comprehensive works of Michelsen (1993), Neal et al. (1994), Mudge & Bujak (1994, 1996a, b), Michelsen et al. (1995, 1998), Danielsen et al. (1997) and Rasmussen (2004).


1970 ◽  
Vol 12 ◽  
pp. 63-74 ◽  
Author(s):  
Prakash Das Ulak

This paper describes on lithostratigraphy as well as evolution of the fluvial styles in late Cenozoic Siwalik Group along the Kankai River section of east Nepal Himalaya. The Siwalik Group lies on the southern flank of the Himalaya, is composed of molasse sediments, which were derived from the rising Himalaya in the north. The group along the Kankai River section is lithologically divided into the Lower, Middle and Upper Siwaliks, in ascending order based on increasing grain size and lithology. The Lower Siwaliks is subdivided into the lower and upper members, whereas the Middle Siwaliks is subdivided into the lower, middle and upper members on the basis of the relative thickness of the sandstone and mudstone beds, frequency of occurrence of these beds, and grain size of sandstone. The Upper Siwaliks is subdivided into the lower and upper members based on the clast size in conglomerate and constituent of the Siwalik sandstone boulders in conglomerate. Based on the lithology, assemblages of sedimentary structure and sediment body architectures, seven facies associations (FA1 to FA7) are recognised. These facies associations are closely related to each lithostratigraphic units of the area. The sediments of the lower and upper members of the Lower Siwaliks are products of the fine-grained meandering and flood flow-dominated meandering systems, respectively. The lower, middle and upper members of the Middle Siwaliks are interpreted as the deposits by sandy meandering, deep sandy braided and shallow braided systems, respectively whereas the lower and upper members of the Upper Siwaliks are the products of gravelly braided to debris flow-dominated braided systems, respectively.   doi: 10.3126/bdg.v12i0.2251 Bulletin of the Department of Geology, Vol. 12, 2009, pp. 63-74


2015 ◽  
Vol 42 (1) ◽  
Author(s):  
Julia Roskosch ◽  
Sumiko Tsukamoto ◽  
Manfred Frechen

Abstract Luminescence dating was applied on coarse-grained monomineralic potassium-rich feld-spar and polymineralic fine-grained minerals of five samples derived from fluvial deposits of the Riv-er Weser in northwestern Germany. We used a pulsed infrared stimulated luminescence (IRSL) single aliquot regenerative (SAR) dose protocol with an IR stimulation at 50°C for 400 s (50 μs on-time and 200 μs off-time). In order to obtain a stable luminescence signal, only off-time IRSL signal was rec-orded. Performance tests gave solid results. Anomalous fading was intended to be reduced by using the pulsed IRSL signal measured at 50°C (IR50), but fading correction was in most cases necessary due to moderate fading rates. Fading uncorrected and corrected pulsed IR50 ages revealed two major fluvial aggradation phases during the Late Pleistocene, namely during marine isotope stage (MIS) 5d (100 ± 5 ka) and from late MIS 5b to MIS 4 (77 ± 6 ka to 68 ± 5 ka). The obtained luminescence ages are consistent with previous 230Th/U dating results from underlying interglacial deposits of the same pit, which are correlated with MIS 7c to early MIS 6.


1991 ◽  
Vol 28 (10) ◽  
pp. 1594-1612 ◽  
Author(s):  
Marc Foisy ◽  
Gilbert Prichonnet

Sedimentological and petrographical data obtained from five sections located north and south of the Caledonian Highlands in southeastern New Brunswick demonstrate the existence of three main till units and one glaciofluvial unit, which have been grouped in four distinct lithostratigraphic units. The lower till was deposited by a glacier that overrode the Caledonian Highlands from northwest to southeast and advanced as far as Nova Scotia during Middle(?) to Late Wisconsinan times. The overlying middle till from the north provides evidence that ice continued to advance across the Highlands from northwest toward southeast and then was partially overwhelmed by another glacier that was advancing southwest along the southern border of the Highlands: this glacier deposited a coeval middle till. During Late Wisconsinan deglaciation, ice separated into two masses: a residual ice cap with radial outflow from the Highlands; and a lobe in the Chignecto Bay, retreating toward the northeast. The existence of a plateau ice cap is demonstrated by the presence of till and glaciofluvial deposits in the upper part of all surveyed sections, and is supported by the sequence of ice flow patterns recorded by striae and the centrifugal distribution of meltwater flow indicators. The weak development of soils, the fresh appearance of till and morainic landforms, and the lack of periglacial features throughout the area, especially on the Highlands, all favour the interpretation that the Caledonian Highlands were not a nunatak during the glacial maximum of the Late Wisconsinan Substage.


2020 ◽  
Author(s):  
Juris Soms ◽  
Zane Egle

<p>In the south-western part of Jersika Plain (SE Latvia), the late Pleistocene aeolian sediments form the inland dune field located at Dviete village. This dune field with surface >112 km<sup>2</sup> represents the evidence of aeolian activity and landscape evolution during the transition from glacial to post-glacial conditions in this region. The dunes have developed on the surface of glaciolacustrine plain, where subaqueous sedimentation in the Nīcgale ice-dammed lake took place during the retreat of glacier, the Pomeranian phase of the last glaciation.</p><p>Here, we focus on reconstructing paleoenvironmental conditions in this region, as inferred from landforms morphology, aeolian sand granulometry and geochemistry, and efficient wind directions derived from DEM. It will contribute to better understanding the processes of landscape evolution conditioned by last deglaciation in SE Latvia.</p><p>Results indicate that single parabolic dunes typically have U-shaped configuration in planar view. Aeolian landforms also link and override each other, presenting clustered groups. GIS analysis reveals that the dominating wind directions during the development of dunes would have been westerly to easterly. Previously published dates on OSL chronology for this dune field indicate the initial phase of aeolian activity at around 15.5 Ka and 14.5 Ka. Hence, when the studied landforms formed in presumably paraglacial landscape, the Scandinavian Ice Sheet (SIS) was still present, and most likely atmospheric circulation in this region was affected by anticyclone over the SIS.</p><p>The mean grain size <em>M<sub>z</sub></em> of the aeolian deposits forming inland dune field ranges between 143 μm and 256 μm. Hence aeolian landforms are composed mainly of fine-grained sands. It indicates the dominance of saltation and a balance between sand particles and comparatively low energy of local wind power during the aeolian processes. The sediments demonstrate well and moderately well sorting with σ values between 0.473 and 0.707 phi. Granulometry elucidates symmetrical distribution of particles of different fraction with small both negative and positive skewness <em>Sk</em> values ranging from -0.048 to 0.112 phi. For the values of kurtosis <em>K<sub>G</sub></em>, results showed that sand is mainly mesokurtic.</p><p>Geochemical analysis points out that elemental composition is rather typical for aeolian sediments, determined by the dominance of quartz and K-silicates. Among REE elements, only Y un Nb were identified in detectable concentrations. Similar geochemical signatures across the dune field suggest the provenance of sediments from one main source, possibly associated with glaciofluvial sediment transportation by extra-glacial waters draining from the already ice-free parts of adjoining uplands to the glacial lake.</p><p>As apparent from the limited number of paleosoils, aeolian deposition seems to nearly instantly follow the drainage of the Nīcgale ice-dammed lake. It is most likely that cold and dry climate in conjunction with low groundwater tables during the late Pleistocene – beginning of Holocene were among the main controlling factors which prevented development of vegetation cover in this region and delayed stabilisation of the dunes. In turn, it facilitates the action of wind over glaciolacustrine plain as the main driving process of aeolian morphogenesis during the initial evolution of metastable post-glacial landscape.</p>


2016 ◽  
Vol 51 ◽  
pp. 59-72
Author(s):  
Prakash Das Ulak

This paper focuses on evolution of the fluvial system in the late Cenozoic Siwalik Group along the Kankai River section of East Nepal. The Siwalik Group lies on the southern flank of the Himalaya and composed of molasse sediments, which were derived from upheaval of the Himalaya. On the basis of lithology, assemblage of sedimentary structures and sediment body architectures, seven facies associations (FA1 to FA7) are recognized in the Kankai River section, East Nepal Himalaya. These recognized facies associations are closely related to each lithostratigraphic units of the area (Ulak 2009). The lower and upper members of the Lower Siwaliks are the products of the fine-grained meandering and flood flow-dominated meandering systems, respectively. The lower, middle and upper members of the Middle Siwaliks are interpreted as the deposits of the sandy meandering, deep sandy braided and shallow braided systems, respectively whereas the lower and upper members of the Upper Siwaliks are the products of the gravelly braided and debris flow-dominated braided systems, respectively. Paleohydrological characteristics and its evolutional changes of the group have been estimated by using grain diameter and thickness of fining upward fluvial successions. The paleohydrology suggests an increase in of flow velocity, channel slope gradient, and discharge of the fluvial system. Paleovelocity varies from 0.19 m/s to 5.31 m/s paleochannel gradient and paleodischarge changes from 6.67x10-5 to 2.97x10-4 m/m and 101 to 104 m3/s, respectively in stratigraphic upward. The progressively changes in the paleohydrology reflect the southward propagation of thrust activities, caused upheaval of the Himalaya.


Sign in / Sign up

Export Citation Format

Share Document