scholarly journals Novel uses of a wide beam saddle field ion source for producing targets used in nuclear physics experiments at the Argonne National Laboratory ATLAS facility

1996 ◽  
Author(s):  
J.P. Greene ◽  
G.E. Thomas ◽  
S.L. Schiel
2019 ◽  
Vol 223 ◽  
pp. 01028
Author(s):  
F.G. Kondev ◽  
D.J. Hartley ◽  
R. Orford ◽  
J.A Clark ◽  
G. Savard ◽  
...  

Properties of neutron-rich nuclei in the A˜160 region are important for achieving a better understanding of the nuclear structure in this region where little is known owing to diffculties in the production of these nuclei at the present nuclear physics facilities. These properties are essential ingredients in the interpretation of the rareearth peak at A˜160 in the r process abundance distribution, since theoretical models are sensitive to nuclear structure input. Predicated on these ideas, we have initiated a new experimental program at Argonne National Laboratory. During the first experiment, beams from the Californium Rare Isotope Breeder Upgrade radioactive beam facility were used in conjunction with the SATURN decay station and the X-array. We focused initially on several odd-odd nuclei, where β decays of both the ground state and an excited isomer were investigated. Because of the spin difference, a variety of structures in the daughter nuclei were selectively populated and characterized based on their decay properties. Mass measurements using the Canadian Penning Trap aimed at establishing the excitation energy of the β-decaying isomers were also carried out. Evidence was found for a change in the single-particle structure, which in turn results in the formation of a sizable N=98 sub-shell gap at large deformation. Results from the first experimental campaign using the newly-commissioned β-decay station at Gammasphere are also presented.


2021 ◽  
Vol 7 (1) ◽  
pp. 5
Author(s):  
Eugenia Naselli ◽  
Richard Rácz ◽  
Sandor Biri ◽  
Maria Mazzaglia ◽  
Luigi Celona ◽  
...  

At the Italian National Institute for Nuclear Physics-Southern National Laboratory (INFN-LNS), and in collaboration with the ATOMKI laboratories, an innovative multi-diagnostic system with advanced analytical methods has been designed and implemented. This is based on several detectors and techniques (Optical Emission Spectroscopy, RF systems, interfero-polarimetry, X-ray detectors), and here we focus on high-resolution, spatially resolved X-ray spectroscopy, performed by means of a X-ray pin-hole camera setup operating in the 0.5–20 keV energy domain. The diagnostic system was installed at a 14 GHz Electron Cyclotron Resonance (ECR) ion source (ATOMKI, Debrecen), enabling high-precision, X-ray, spectrally resolved imaging of ECR plasmas heated by hundreds of Watts. The achieved spatial and energy resolutions were 0.5 mm and 300 eV at 8 keV, respectively. Here, we present the innovative analysis algorithm that we properly developed to obtain Single Photon-Counted (SPhC) images providing the local plasma-emitted spectrum in a High-Dynamic-Range (HDR) mode, by distinguishing fluorescence lines of the materials of the plasma chamber (Ti, Ta) from plasma (Ar). This method allows for a quantitative characterization of warm electrons population in the plasma (and its 2D distribution), which are the most important for ionization, and to estimate local plasma density and spectral temperatures. The developed post-processing analysis is also able to remove the readout noise that is often observable at very low exposure times (msec). The setup is now being updated, including fast shutters and trigger systems to allow simultaneous space and time-resolved plasma spectroscopy during transients, stable and turbulent regimes.


Author(s):  
Charles W. Allen ◽  
Robert C. Birtcher

The uranium silicides, including U3Si, are under study as candidate low enrichment nuclear fuels. Ion beam simulations of the in-reactor behavior of such materials are performed because a similar damage structure can be produced in hours by energetic heavy ions which requires years in actual reactor tests. This contribution treats one aspect of the microstructural behavior of U3Si under high energy electron irradiation and low dose energetic heavy ion irradiation and is based on in situ experiments, performed at the HVEM-Tandem User Facility at Argonne National Laboratory. This Facility interfaces a 2 MV Tandem ion accelerator and a 0.6 MV ion implanter to a 1.2 MeV AEI high voltage electron microscope, which allows a wide variety of in situ ion beam experiments to be performed with simultaneous irradiation and electron microscopy or diffraction.At elevated temperatures, U3Si exhibits the ordered AuCu3 structure. On cooling below 1058 K, the intermetallic transforms, evidently martensitically, to a body-centered tetragonal structure (alternatively, the structure may be described as face-centered tetragonal, which would be fcc except for a 1 pet tetragonal distortion). Mechanical twinning accompanies the transformation; however, diferences between electron diffraction patterns from twinned and non-twinned martensite plates could not be distinguished.


Author(s):  
H. K. Birnbaum ◽  
I. M. Robertson

Studies of the effects of hydrogen environments on the deformation and fracture of fcc, bcc and hep metals and alloys have been carried out in a TEM environmental cell. The initial experiments were performed in the environmental cell of the HVEM facility at Argonne National Laboratory. More recently, a dedicated environmental cell facility has been constructed at the University of Illinois using a JEOL 4000EX and has been used for these studies. In the present paper we will describe the general design features of the JEOL environmental cell and some of the observations we have made on hydrogen effects on deformation and fracture.The JEOL environmental cell is designed to operate at 400 keV and below; in part because of the available accelerating voltage of the microscope and in part because the damage threshold of most materials is below 400 keV. The gas pressure at which chromatic aberration due to electron scattering from the gas molecules becomes excessive does not increase rapidly with with accelerating voltage making 400 keV a good choice from that point of view as well. A series of apertures were placed above and below the cell to control the pressures in various parts of the column.


Sign in / Sign up

Export Citation Format

Share Document