scholarly journals HEAT--A ONE-DIMENSIONAL HEAT TRANSFER EQUATION CODE FOR THE IBM-704

1959 ◽  
Author(s):  
C.M. King ◽  
R.F. Boyle
1998 ◽  
Vol 120 (1) ◽  
pp. 133-139 ◽  
Author(s):  
Y. Bayazitoglu ◽  
B. Y. Wang

The wavelet basis functions are introduced into the radiative transfer equation in the frequency domain. The intensity of radiation is expanded in terms of Daubechies’ wrapped-around wavelet functions. It is shown that the wavelet basis approach to modeling nongrayness can be incorporated into any solution method for the equation of transfer. In this paper the resulting system of equations is solved for the one-dimensional radiative equilibrium problem using the P-N approximation.


2021 ◽  
Vol 1 (2) ◽  
pp. 12-20
Author(s):  
Najmeh Keshtkar ◽  
Johannes Mersch ◽  
Konrad Katzer ◽  
Felix Lohse ◽  
Lars Natkowski ◽  
...  

This paper presents the identification of thermal and mechanical parameters of shape memory alloys by using the heat transfer equation and a constitutive model. The identified parameters are then used to describe the mathematical model of a fiber-elastomer composite embedded with shape memory alloys. To verify the validity of the obtained equations, numerical simulations of the SMA temperature and composite bending are carried out and compared with the experimental results.


2016 ◽  
Vol 20 (suppl. 3) ◽  
pp. 777-780
Author(s):  
Huan Sun ◽  
Xing-Hua Liu

In this paper, we use the Laplace transform series expansion method to find the analytical solution for the local fractional heat-transfer equation defined on Cantor sets via local fractional calculus.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012006
Author(s):  
A G Kirdyashkin ◽  
A A Kirdyashkin ◽  
A V Borodin ◽  
V S Kolmakov

Abstract Temperature distribution in the upper mantle underneath the continent, as well as temperature distribution in the lower mantle, is obtained. In the continental lithosphere, the solution to the heat transfer equation is obtained in the model of conduction heat transfer with inner heat within the crust. To calculate the temperature distribution in the upper and lower mantle, we use the results of laboratory and theoretical modeling of free convective heat transfer in a horizontal layer heated from below and cooled from above.


Sign in / Sign up

Export Citation Format

Share Document