scholarly journals Magnetic pulse in a cold collision-free plasma

1966 ◽  
Author(s):  
Douglas E. Gonzales
2020 ◽  
Vol 27 (4) ◽  
pp. 042102
Author(s):  
Gohar Abbas ◽  
J. E. Allen ◽  
M. Coppins ◽  
L. Simons ◽  
L. James

1962 ◽  
Vol 12 (1) ◽  
pp. 81-87 ◽  
Author(s):  
P. G. Saffman

A one-dimensional steady solution of the equations of motion of a cold plasma in a magnetic field is obtained. The plasma is of semi-infinite extent, bounded by a plane interface which separates it from a vacuum or medium at rest. The particles approach from infinity, are reflected at the front, and return to infinity in the opposite direction. At infinity, the magnetic field is parallel and anti-parallel to the plasma streams, and is inclined at an angle to the normal to the interface. The front is a current sheet across which the lines of force are bent, with the component of the magnetic field in the plane of the front changing direction. The inertia of the electrons is neglected, and the characteristic frequency associated with the front is the ion gyro-frequency.


1961 ◽  
Vol 11 (1) ◽  
pp. 16-20 ◽  
Author(s):  
P. G. Saffman

It is shown that solitary hydromagnetic waves can propagate parallel to a uniform magnetic field in a cold collision-free plasma. These waves are exact solutions of the non-linear equations of motion except for the quasi-neutral approximation. The velocity of propagation lies in a range of values somewhat larger than the Alfvén velocity, and is of the order of 25 times the Alfvén velocity for hydrogen, the precise value depending upon the strength of the wave. Simple expressions exist for the velocities of the ions and electrons and the magnetic field inside the wave. The lines of force are spirals about the direction of propagation. The waves are symmetrical about their middle. The order of magnitude of their width is the geometric mean of the gyro-radii of the ions and electrons when moving with the Alfvén velocity. The maximum value of the magnetic field can be somewhat larger than the value away from the wave.


1976 ◽  
Vol 35 (01) ◽  
pp. 178-185 ◽  
Author(s):  
Helena Sandberg ◽  
Lars-Olov Andersson

SummaryHuman plasma lipoprotein fractions were prepared by flotation in the ultracentrifuge. Addition of these fractions to platelet-rich, platelet-poor and platelet-free plasma affected the partial thromboplastin and Stypven clotting times to various degrees. Addition of high density lipoprotein (HDL) to platelet-poor and platelet-free plasma shortened both the partial thromboplastin and the Stypven time, whereas addition of low density lipoprotein and very low density lipoprotein (LDL + VLDL) fractions only shortened the Stypven time. The additions had little or no effect in platelet-rich plasma.Experiments involving the addition of anti-HDL antibodies to plasmas with different platelet contents and measuring of clotting times produced results that were in good agreement with those noted when lipoprotein was added. The relation between structure and the clot-promoting activity of various phospholipid components is discussed.


1981 ◽  
Vol 46 (03) ◽  
pp. 645-647 ◽  
Author(s):  
M A Orchard ◽  
C Robinson

SummaryThe biological half-life of prostacyclin in Krebs solution, human cell-free plasma or whole blood was measured by bracket assay on ADP-induced platelet aggregation. At 37°C, pH 7.4, plasma and blood reduced the rate of loss of antiaggregatory activity compared with Krebs solution. The protective effect of plasma was greater than that of whole blood. This effect could be partially mimicked by the addition of human or bovine serum albumin to the Krebs solution. The stabilisation afforded by human serum albumin was dependent on the fatty acid content of the albumin, although this was less important for bovine serum albumin.


Sign in / Sign up

Export Citation Format

Share Document