scholarly journals High-resolution, three-dimensional, seismic survey over the geopressured-geothermal reservoir at Parcperdue, Louisiana. Final report, January 1, 1981-July 31, 1985

1985 ◽  
Author(s):  
G.L. Kinsland

Geophysics ◽  
1991 ◽  
Vol 56 (12) ◽  
pp. 2036-2047 ◽  
Author(s):  
G. L. Kinsland ◽  
J. A. McDonald ◽  
G. H. F. Gardner

A thin sand has been successfully imaged at great depth using a carefully designed, high‐resolution, three‐dimensional (3-D), seismic survey. The area of the survey was along a portion of the boundary between northeastern Vermilion Parish and southern Lafayette Parish about twelve miles south of Lafayette, Louisiana. Surface terrain was typically flat farmland at the southern edge of the Pleistocene Prairie Terrace and was ideal for this type of high‐resolution survey. The greatest elevation difference between any two source or receiver locations was about 6 ft (1.8 m). The target for this survey was the Cib jeff sand at a depth of about 13,400 ft (4084 m). The Cib jeff sand is within massive shales and is within a geopressured zone. Relative isolation of the Cib jeff sand by the surrounding shales makes the sand a good candidate for seismic imaging. After some preliminary field tests a survey was designed which used the crossed‐array method in which the source and receiver lines are at some angle to one another, usually orthogonal. Data were collected using a 1024-channel recording system with vibrators as sources. Receiver arrays were not used as it was possible to sweep with frequencies outside the frequency range of the ground roll. A total of [Formula: see text] seismic traces was collected. Many tests were also carried out in the processing of these data and it was found that large variations of offsets in the data volume resulted in deterioration in the quality of stacked data due to nonhyperbolic moveout. The migrated data volume was restricted to traces with less than 7500 ft (2286 m) source‐to‐receiver offset, and to the time window containing the Cib jeff sand, namely from 2.5 to 5.0 s. The Cib jeff sand was successfully imaged and the migrated data volume was interpreted using paper sections. As one would expect, the interpretation based on the total volume is more complex than the interpretation using available conventional two‐dimensional (2-D) lines. In particular the fault pattern interpretation based on 2-D seismic data and well logs is believed to be in error. The western bounding fault is placed further west and other faults were delineated through the reservoir when the interpretation was based on the total 3-D volume. Overall, we believe that this reservoir was mapped with more control than was possible with 2-D data.



Geophysics ◽  
2000 ◽  
Vol 65 (3) ◽  
pp. 712-718 ◽  
Author(s):  
Lawrence M. Gochioco

A high‐resolution three‐dimensional (3-D) seismic survey was conducted in advance of coal mine development in the Illinois basin in May 1989 to better define a geologic structure with the potential to adversely affect longwall mining conditions. The 3-D seismic data indicate that an abrupt change in seam elevation, or roll, encountered near the northern property line trends south into the reserve area and then turns southeast. A personal computer‐based workstation was used to integrate borehole and seismic data for modeling in which 3-D block diagrams of the calculated seam elevations were generated. The block diagrams show a steep slope on the west flank of the roll that gradually decreases as the roll turns to the southeast. The survey also reveals a geologic structure beneath the roll at an estimated depth of 46–62 m. Horizontal time‐slice sections of this feature suggest the presence of a paleochannel that meanders on a similar course as the roll, which apparently was connected to a larger paleochannel system. A Conoco high‐frequency vibroseis unit was successfully used as the seismic source to generate the high frequencies necessary to detect and resolve the thin coal beds.







Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.



Author(s):  
Kenneth H. Downing ◽  
Hu Meisheng ◽  
Hans-Rudolf Went ◽  
Michael A. O'Keefe

With current advances in electron microscope design, high resolution electron microscopy has become routine, and point resolutions of better than 2Å have been obtained in images of many inorganic crystals. Although this resolution is sufficient to resolve interatomic spacings, interpretation generally requires comparison of experimental images with calculations. Since the images are two-dimensional representations of projections of the full three-dimensional structure, information is invariably lost in the overlapping images of atoms at various heights. The technique of electron crystallography, in which information from several views of a crystal is combined, has been developed to obtain three-dimensional information on proteins. The resolution in images of proteins is severely limited by effects of radiation damage. In principle, atomic-resolution, 3D reconstructions should be obtainable from specimens that are resistant to damage. The most serious problem would appear to be in obtaining high-resolution images from areas that are thin enough that dynamical scattering effects can be ignored.



Author(s):  
Hirano T. ◽  
M. Yamaguchi ◽  
M. Hayashi ◽  
Y. Sekiguchi ◽  
A. Tanaka

A plasma polymerization film replica method is a new high resolution replica technique devised by Tanaka et al. in 1978. It has been developed for investigation of the three dimensional ultrastructure in biological or nonbiological specimens with the transmission electron microscope. This method is based on direct observation of the single-stage replica film, which was obtained by directly coating on the specimen surface. A plasma polymerization film was deposited by gaseous hydrocarbon monomer in a glow discharge.The present study further developed the freeze fracture method by means of a plasma polymerization film produces a three dimensional replica of chemically untreated cells and provides a clear evidence of fine structure of the yeast plasma membrane, especially the dynamic aspect of the structure of invagination (Figure 1).



Sign in / Sign up

Export Citation Format

Share Document