Role of the Bacterial Type VI Secretion System in the Modulation of Mammalian Host Cell Immunity

2015 ◽  
Vol 22 (14) ◽  
pp. 1734-1744 ◽  
Author(s):  
Marlies Ceuleneer ◽  
Martine Vanhoucke ◽  
Rudi Beyaert
2017 ◽  
Author(s):  
Maximilian Brackmann ◽  
Jing Wang ◽  
Marek Basler

AbstractSecretion systems are essential for bacteria to survive and manipulate their environment. The bacterial Type VI Secretion System (T6SS) generates the force needed for protein translocation by the contraction of a long polymer called sheath, which is composed of interconnected VipA/VipB subunits forming a six-start helix. The mechanism of T6SS sheath contraction and the structure of its extended state are unknown. Here we show that elongating the N-terminal VipA linker or eliminating charge of a specific VipB residue abolished sheath contraction and delivery of effectors into target cells. The assembly of the non-contractile sheaths was dependent on the baseplate component TssE and mass-spectrometry analysis identified Hcp, VgrG and other components of the T6SS baseplate specifically associated with stable non-contractile sheaths. The ability to lock T6SS in the pre-firing state opens new possibilities for understanding its mode of action.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Jinshui Lin ◽  
Lei Xu ◽  
Jianshe Yang ◽  
Zhuo Wang ◽  
Xihui Shen

AbstractBacteria inhabit diverse and dynamic environments, where nutrients may be limited and toxic chemicals can be prevalent. To adapt to these stressful conditions, bacteria have evolved specialized protein secretion systems, such as the type VI secretion system (T6SS) to facilitate their survival. As a molecular syringe, the T6SS expels various effectors into neighboring bacterial cells, eukaryotic cells, or the extracellular environment. These effectors improve the competitive fitness and environmental adaption of bacterial cells. Although primarily recognized as antibacterial weapons, recent studies have demonstrated that T6SSs have functions beyond interspecies competition. Here, we summarize recent research on the role of T6SSs in microbiome modulation, pathogenesis, and stress resistance.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010116
Author(s):  
Xiaoye Liang ◽  
Tong-Tong Pei ◽  
Hao Li ◽  
Hao-Yu Zheng ◽  
Han Luo ◽  
...  

The type VI secretion system (T6SS) is a spear-like nanomachine found in gram-negative pathogens for delivery of toxic effectors to neighboring bacterial and host cells. Its assembly requires a tip spike complex consisting of a VgrG-trimer, a PAAR protein, and the interacting effectors. However, how the spike controls T6SS assembly remains elusive. Here we investigated the role of three VgrG-effector pairs in Aeromonas dhakensis strain SSU, a clinical isolate with a constitutively active T6SS. By swapping VgrG tail sequences, we demonstrate that the C-terminal ~30 amino-acid tail dictates effector specificity. Double deletion of vgrG1&2 genes (VgrG3+) abolished T6SS secretion, which can be rescued by ectopically expressing chimeric VgrG3 with a VgrG1/2-tail but not the wild type VgrG3. In addition, deletion of effector-specific chaperones also severely impaired T6SS secretion, despite the presence of intact VgrG and effector proteins, in both SSU and Vibrio cholerae V52. We further show that SSU could deliver a V. cholerae effector VasX when expressing a plasmid-borne chimeric VgrG with VasX-specific VgrG tail and chaperone sequences. Pull-down analyses show that two SSU effectors, TseP and TseC, could interact with their cognate VgrGs, the baseplate protein TssK, and the key assembly chaperone TssA. Effectors TseL and VasX could interact with TssF, TssK and TssA in V. cholerae. Collectively, we demonstrate that chimeric VgrG-effector pairs could bypass the requirement of heterologous VgrG complex and propose that effector-stuffing inside the baseplate complex, facilitated by chaperones and the interaction with structural proteins, serves as a crucial structural determinant for T6SS assembly.


Sign in / Sign up

Export Citation Format

Share Document