In vitro -In vivo- In silico Simulation of Experimental Design Based Optimized Curcumin Loaded Multiparticulates System

2018 ◽  
Vol 24 (30) ◽  
pp. 3576-3586
Author(s):  
Sima Singh ◽  
Afzal Hussain ◽  
Uma Ranjan Lal ◽  
Nisar Sayyad ◽  
Rajshekhar Karpoormath ◽  
...  

The present study focused to optimize dual coated multiparticulates using Box-Behnken Experimental Design and in-silico simulation using GastroPlusTM software. The optimized formulations (OB1 and OB2) were comparatively evaluated for particle size, morphological, in vitro drug release, and in vivo permeation studies. In silico simulation study predicted the in vivo performance of the optimized formulation based on in-vitro data. Results suggested that optimized formulation was obtained using maximum content of Eudragit FS30D and minimum drying time (2 min). In vitro data corroborated that curcumin release was completely protected from premature drug release in the proximal part of gastro intestinal tract and successfully released to the colon (95%) which was closely predicted (90.1 %) by GastroPlusTM simulation technique. Finally, confocal laser scanning microscopy confirmed the in-vitro findings wherein maximum intensity was observed with OB1 treated group suggesting successful delivery of OB1 to the colon for enhanced absorption as predicted in regional absorption profile in ascending colon (30.9%) and caecum (23.2%). Limited drug absorption was predicted in small intestine (1.5-8.7%). The successful outcomes of the research work minimized the release of curcumin in the upper gastric tract and the maximized drug access to the colon (pH 7.4) as prime concern.

Pharmaceutics ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 659
Author(s):  
Maximilian Sager ◽  
Philipp Schick ◽  
Magdalena Mischek ◽  
Christian Schulze ◽  
Mahmoud Hasan ◽  
...  

The fasted state administration of immediate release (IR) dosage forms is often regarded as uncritical since physiological aspects seem to play a minor role for disintegration and drug release. However, recent in vivo studies in humans have highlighted that fasted state conditions are in fact highly dynamic. It was therefore the aim of this study to investigate the disintegration and drug release behavior of four different IR formulations of the probe drug caffeine under physiologically relevant conditions with the aid of the GastroDuo. One film-coated tablet and three different capsule formulations based on capsule shells either made from hard gelatin or hydroxypropylmethyl cellulose (HPMC) were tested in six different test programs. To evaluate the relevance of the data generated, the four IR formulations were also studied in a four-way cross-over study in 14 healthy volunteers by using the salivary tracer technique (STT). It could be shown that the IR formulations behaved differently in the in vitro test programs. Thereby, the simulated parameters affected the disintegration and dissolution behavior of the four IR formulations in different ways. Whereas drug release from the tablet started early and was barely affected by temperature, pH or motility, the different capsule formulations showed a longer lag time and were sensitive to specific parameters. However, once drug release was initiated, it typically progressed with a higher rate for the capsules compared to the tablet. Interestingly, the results obtained with the STT were not always in line with the in vitro data. This observation was due to the fact that the probability of the different test programs was not equal and that certain scenarios were rather unlikely to occur under the controlled and standardized conditions of clinical studies. Nonetheless, the in vitro data are still valuable as they allowed to discriminate between different formulations.


2021 ◽  
pp. 088391152199784
Author(s):  
Loveleen Kaur ◽  
Ajay Kumar Thakur ◽  
Pradeep Kumar ◽  
Inderbir Singh

Present study was aimed to synthesize and characterize Chitosan-Catechol conjugates and to design and develop mucoadhesive pellets loaded with lafutidine. SEM images indicated the presence of fibrous structures responsible for enhanced mucoadhesive potential of Chitosan-Catechol conjugates. Thermodynamic stability and amorphous nature of conjugates was confirmed by DSC and XRD studies respectively. Rheological studies were used to evaluate polymer mucin interactions wherein strong interactions between Chitosan-Catechol conjugate and mucin was observed in comparison to pristine chitosan and mucin. The mucoadhesion potential of Chitosan-Catechol (Cht-C) versus Chitosan (Cht) was assessed in silico using molecular mechanics simulations and the results obtained were compared with the in vitro and ex vivo results. Cht-C/mucin demonstrated much higher energy stabilization (∆E ≈ −65 kcal/mol) as compared to Cht/mucin molecular complex. Lafutidine-loaded pellets were prepared from Chitosan (LPC) and Chitosan-Catechol conjugates (LPCC) and were evaluated for various physical properties viz. flow, circularity, roundness, friability, drug content, particle size and percent mucoadhesion. In vitro drug release studies on LPC and LPCC pellets were performed for computing t50%, t90% and mean dissolution time. The values of release exponent from Korsmeyer-Peppas model was reported to be 0.443 and 0.759 for LPC and LPCC pellets suggesting Fickian and non-Fickian mechanism representing drug release, respectively. In vivo results depicted significant controlled release and enhanced residence of the drug after being released from the chitosan-catechol coated pellets. Chitosan-Catechol conjugates were found to be a promising biooadhesive polymer for the development of various mucoadhesive formulations.


1993 ◽  
Vol 21 (2) ◽  
pp. 173-180
Author(s):  
Gunnar Johanson

This presentation addresses some aspects of the methodology, advantages and problems associated with toxicokinetic modelling based on in vitro data. By using toxicokinetic models, particularly physiologically-based ones, it is possible, in principle, to describe whole body toxicokinetics, target doses and toxic effects from in vitro data. Modelling can be divided into three major steps: 1) to relate external exposure (applied dose) of xenobiotic to target dose; 2) to establish the relationship between target dose and effect (in vitro data, e.g. metabolism in microsomes, partitioning in tissue homogenates, and toxicity in cell cultures, are useful in both steps); and 3) to relate external exposure to toxic effect by combining the first two steps. Extrapolations from in vitro to in vivo, between animal and man, and between high and low doses, can easily be carried out by toxicokinetic simulations. In addition, several factors that may affect the toxic response by changing the target dose, such as route of exposure and physical activity, can be studied. New insights concerning the processes involved in toxicity often emerge during the design, refinement and validation of the model. The modelling approach is illustrated by two examples: 1) the carcinogenicity of 1,3-butadiene; and 2) the haematotoxicity of 2-butoxyethanol. Toxicokinetic modelling is an important tool in toxicological risk assessment based on in vitro data. Many factors, some of which can, and should be, studied in vitro, are involved in the expression of toxicity. Successful modelling depends on the identification and quantification of these factors.


1970 ◽  
Vol 131 (6) ◽  
pp. 1261-1270 ◽  
Author(s):  
George C. Saunders ◽  
Douglas Swartzendruber

Cells capable of reacting with sheep erythrocyte (SRBC) antigen to maturate and produce hemolysin appear simultaneously in the bone marrow and spleen of 1-day old Swiss-Webster mice. However, hemolysin-producing cell clones (HPCC) do not result. Complete functional precursor units generally appear in the spleens of mice older than 3 days. In vivo and in vitro data correlate well in this regard. Complete precursor units are not seen in the bone marrow and only very rarely in the thymus. The efficiency of precursor units of neonatal mice when they become functional approximates that of the mature animal when based on the doubling time of plaque-forming cells (PFC). Possible explanations of the initial appearance of incomplete precursor units have been discussed.


2003 ◽  
Vol 59 (5-6) ◽  
pp. 429-442 ◽  
Author(s):  
Xue-Qing Li ◽  
Anders Bj�rkman ◽  
Tommy B. Andersson ◽  
Lars L. Gustafsson ◽  
Collen M. Masimirembwa

2002 ◽  
Vol 46 (9) ◽  
pp. 3039-3041 ◽  
Author(s):  
Sofia Perea ◽  
Gloria Gonzalez ◽  
Annette W. Fothergill ◽  
William R. Kirkpatrick ◽  
Michael G. Rinaldi ◽  
...  

ABSTRACT The interaction between caspofungin acetate and voriconazole was studied in vitro by using 48 clinical Aspergillus spp. isolates obtained from patients with invasive aspergillosis. MICs were determined by the NCCLS broth microdilution method. Synergy, defined as a fractional inhibitory concentration (FIC) index of <1, was detected in 87.5% of the interactions; an additive effect, defined as an FIC index of 1.0, was observed in 4.2% of the interactions; and a subadditive effect, defined as an FIC index of 1.0 to 2.0, was found in 8.3% of the interactions. No antagonism was observed. Animal models are required to validate the in vivo significance of these in vitro data presented for the combination of caspofungin and voriconazole.


2016 ◽  
Vol 77 ◽  
pp. 54-64 ◽  
Author(s):  
Louis Anthony (Tony) Cox ◽  
Douglas A. Popken ◽  
A. Michael Kaplan ◽  
Laura M. Plunkett ◽  
Richard A. Becker

Blood ◽  
2012 ◽  
Vol 119 (2) ◽  
pp. 540-550 ◽  
Author(s):  
Benjamin J. Frisch ◽  
John M. Ashton ◽  
Lianping Xing ◽  
Michael W. Becker ◽  
Craig T. Jordan ◽  
...  

Pancytopenia is a major cause of morbidity in acute myeloid leukemia (AML), yet its cause is unclear. Normal osteoblastic cells have been shown to support hematopoiesis. To define the effects of leukemia on osteoblastic cells, we used an immunocompetent murine model of AML. Leukemic mice had inhibition of osteoblastic cells, with decreased serum levels of the bone formation marker osteocalcin. Osteoprogenitor cells and endosteal-lining osteopontin+ cells were reduced, and osteocalcin mRNA in CD45− marrow cells was diminished. This resulted in severe loss of mineralized bone. Osteoclasts were only transiently increased without significant increases in bone resorption, and their inhibition only partially rescued leukemia-induced bone loss. In vitro data suggested that a leukemia-derived secreted factor inhibited osteoblastic cells. Because the chemokine CCL-3 was recently reported to inhibit osteoblastic function in myeloma, we tested its expression in our model and in AML patients. Consistent with its potential novel role in leukemic-dependent bone loss, CCL-3 mRNA was significantly increased in malignant marrow cells from leukemic mice and from samples from AML patients. Based on these results, we propose that therapeutic mitigation of leukemia-induced uncoupling of osteoblastic and osteoclastic cells may represent a novel approach to promote normal hematopoiesis in patients with myeloid neoplasms.


Sign in / Sign up

Export Citation Format

Share Document