XIST: A Meaningful Long Noncoding RNA in NSCLC Process

2020 ◽  
Vol 26 ◽  
Author(s):  
Yujie Shen ◽  
Yexiang Lin ◽  
Kai Liu ◽  
Jinlan Chen ◽  
Juanjuan Zhong ◽  
...  

Background: A number of studies have proposed that lncRNA XIST plays a role in the development and chemosensitivity of NSCLC. Besides, XIST may become a potential therapeutic target for NSCLC patients. The aim of this review is to reveal the biological functions and exact mechanisms of XIST in NSCLC. Methods: In this review, relevant researches involving in the relationship between XIST and NSCLC are collected through systematic retrieval of PubMed Results: XIST is an oncogene in NSCLC and is abnormally upregulated in NSCLC tissues. Considerable evidence has shown that XIST exerts a critical role in the proliferation, invasion, migration, apoptosis and chemosensitivity of NSCLC cells. XIST mainly functions as a ceRNA in NSCLC process, while XIST also functions at transcriptional levels. Conclusion: LncRNA XIST has potential to become a novel biomolecular marker of NSCLC and a therapeutic target for NSCLC.

2015 ◽  
Vol 34 (6) ◽  
pp. 932-941 ◽  
Author(s):  
Xianyi Cai ◽  
Yunlu Liu ◽  
Wen Yang ◽  
Yun Xia ◽  
Cao Yang ◽  
...  

2020 ◽  
Vol 111 (7) ◽  
pp. 2440-2450 ◽  
Author(s):  
Yuichi Mitobe ◽  
Kazuhiro Ikeda ◽  
Wataru Sato ◽  
Yukinobu Kodama ◽  
Mitsuru Naito ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jingliang Zhang ◽  
Chenyu Zhang ◽  
Xiaoling Chen ◽  
Bingwei Wang ◽  
Weining Ma ◽  
...  

AbstractTemporal lobe epilepsy (TLE) is one of the most common and intractable neurological disorders in adults. Dysfunctional PKA signaling is causally linked to the TLE. However, the mechanism underlying PKA involves in epileptogenesis is still poorly understood. In the present study, we found the autophosphorylation level at serine 114 site (serine 112 site in mice) of PKA-RIIβ subunit was robustly decreased in the epileptic foci obtained from both surgical specimens of TLE patients and seizure model mice. The p-RIIβ level was negatively correlated with the activities of PKA. Notably, by using a P-site mutant that cannot be autophosphorylated and thus results in the released catalytic subunit to exert persistent phosphorylation, an increase in PKA activities through transduction with AAV-RIIβ-S112A in hippocampal DG granule cells decreased mIPSC frequency but not mEPSC, enhanced neuronal intrinsic excitability and seizure susceptibility. In contrast, a reduction of PKA activities by RIIβ knockout led to an increased mIPSC frequency, a reduction in neuronal excitability, and mice less prone to experimental seizure onset. Collectively, our data demonstrated that the autophosphorylation of RIIβ subunit plays a critical role in controlling neuronal and network excitabilities by regulating the activities of PKA, providing a potential therapeutic target for TLE.


2020 ◽  
Author(s):  
Surendra Sharma ◽  
Karl Munger

ABSTRACTHPV16 E7 has long been noted to stabilize the TP53 tumor suppressor. However, the molecular mechanism of TP53 stabilization by HPV16 E7 has remained obscure and can occur independent of E2F regulated MDM2 inhibitor, p14ARF. Here, we report that the Damage Induced Noncoding (DINO) lncRNA (DINOL) is the missing link between HPV16 E7 and increased TP53 levels. DINO levels are decreased in cells where TP53 is inactivated, either by HPV16 E6, expression of a dominant negative TP53 minigene or by TP53 depletion. DINO levels are increased in HPV16 E7 expressing cells. HPV16 E7 causes increased DINO expression independent of RB1 degradation and E2F1 activation. Similar to the adjacent CDKN1A locus, DINO expression is regulated by the histone demethylase, KDM6A. DINO stabilizes TP53 in HPV16 E7 expressing cells and as a TP53 transcriptional target, DINO levels further increase. Similar to other oncogenes such as adenovirus E1A or MYC, HPV16 E7 expressing cells are sensitized to cell death under conditions of metabolic stress and in the case of E7, this has been linked to TP53 activation. Consistent with earlier studies, we show that HPV16 E7 expressing keratinocytes are highly sensitive to metabolic stress induced by the antidiabetic drug, metformin. Metformin sensitivity of HPV16 E7 expressing cells is rescued by DINO depletion. This work identifies DINO as a critical mediator TP53 stabilization and activation in HPV16 E7 expressing cells.IMPORTANCEViral oncoproteins, including HPV16 E6 and E7 have been instrumental in elucidating the activities of cellular signaling networks including those governed by the TP53 tumor suppressor. Our study demonstrates that the long noncoding RNA DINO is the long sought missing link between HPV16 E7 and elevated TP53 levels. Importantly, the TP53 stabilizing DINO plays a critical role in the predisposition of HPV16 E7 expressing cells to cell death under metabolic stress conditions from metformin treatment.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Fei Fei Guo ◽  
Jiu Wei Cui

Earlier studies on elucidating the role of lymphocytes in tumor immunity predominantly focused on T cells. However, the role of B cells in tumor immunity has increasingly received better attention in recent studies. The B cells that infiltrate tumor tissues are called tumor-infiltrating B cells (TIBs). It is found that TIBs play a multifaceted dual role in regulating tumor immunity rather than just tumor inhibition or promotion. In this article, latest research advances focusing on the relationship between TIBs and tumor complexity are reviewed, and light is shed on some novel ideas for exploiting TIBs as a possible tumor biomarker and potential therapeutic target against tumors.


Sign in / Sign up

Export Citation Format

Share Document