Review: Studies on the Synthesis of Quinolone Derivatives with Their Antibacterial Activity (Part 1)

2020 ◽  
Vol 24 (8) ◽  
pp. 817-854
Author(s):  
Anil Kumar ◽  
Nishtha Saxena ◽  
Arti Mehrotra ◽  
Nivedita Srivastava

Quinolone derivatives have attracted considerable attention due to their medicinal properties. This review covers many synthetic routes of quinolones preparation with their antibacterial properties. Detailed study with structure-activity relationship among quinolone derivatives will be helpful in designing new drugs in this field.

2018 ◽  
Vol 25 (30) ◽  
pp. 3560-3576 ◽  
Author(s):  
Massimo Tosolini ◽  
Paolo Pengo ◽  
Paolo Tecilla

Natural and synthetic anionophores promote the trans-membrane transport of anions such as chloride and bicarbonate. This process may alter cellular homeostasis with possible effects on internal ions concentration and pH levels triggering several and diverse biological effects. In this article, an overview of the recent results on the study of aniontransporters, mainly acting with a carrier-type mechanism, is given with emphasis on the structure/activity relationship and on their biological activity as antibiotic and anticancer agents and in the development of new drugs for treating conditions derived from dysregulation of natural anion channels.


2012 ◽  
Vol 9 (3) ◽  
pp. 329-335 ◽  
Author(s):  
Surajit Kumar Ghosh ◽  
Ashmita Saha ◽  
Bornali Hazarika ◽  
Udaya Pratap Singh ◽  
Hans Raj Bhat ◽  
...  

Author(s):  
Easwaramoorthi Deivanayagam ◽  
Jayaprakash R ◽  
Aroj Kumar Sha ◽  
Hemalatha S

ABSTRACTObjective: Aim of this work is to synthesize and characterization of the hydroxyl group the hydroxyl group substituted L-phenylalanine Schiff basesto compare their predicted quantitative structure-activity relationship (QSAR) and molecular docking against Escherichia coli protein ZipA (1s1j)outcomes with the antibacterial activity and brine shrimp lethal assay (BSLA) results.Methods: The Schiff bases of L-Phenylalanine were synthesized by the simple condensation reaction using methanol, water in 2:1 ratio at reflux andwere characterized by spectral techniques. QSAR parameters of the Schiff bases were predicted using java-based online and offline tools. Moleculardocking carried through online mcule server and CLC Drug Discovery Workbench 3. Antibacterial activity and toxicity studies were conducted usingbroth dilution and brine shrimp lethal assay methods, respectively.Results: The Schiff bases fulfilled the QSAR drug-likeness parameters and showed the docking score between −6.8 and −6.0 Kcal/mol which arehigher than amoxilicillin and gentamicin like standard drugs. They also possess good inhibition for urinary tract infection causing E. coli bacteria,and minimum inhibitory concentrations (MIC) exists between 3.25 and 5.25 μg/ml. The brine shrimp lethal concentration for 50% mortality [LC50])between 58.73 and 135.6 μg/ml.Conclusion: Para, meta and 2,4 hydroxyl substituted Schiff bases exhibited good inhibition against Gram-negative E. coli bacteria at low concentrationand the MIC exists below the LC50 value. The Schiff base showed high drug score, high docking score, and low toxicity than other Schiff base. Dockingscore, high inhibition, low clogP, low MICKeywords: L-phenylalanine, Schiff base, Quantitative structure-activity relationship, Docking, Antibacterial, Lethal concentration for 50% mortality.


2012 ◽  
Vol 7 (1) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Mi Kyoung Kim ◽  
Jun Cheol Park ◽  
Youhoon Chong

The aim of this study was to investigate the role of the aromatic substituents of the curcumin scaffold on the antibacterial activity of the resulting curcumin analogues. Six curcumin analogues with different aromatic substituents were prepared and their antibacterial activities were evaluated against two Gram-positive and four Gram-negative bacteria. The structure-activity relationship study demonstrated that antibacterial activity of the curcumin analogues was critically dependent upon the aromatic hydroxyl group. Thus, hydroxycurcumin with an additional aromatic hydroxyl group on the curcumin scaffold showed antibacterial activity against all six pathogens tested and it remained effective even against ampicillin-resistant Enterobacter cloacae. Along with the previously reported antioxidative effect, the broad-spectrum antibacterial activity of the hydroxycurcumin warrants further investigation of its biological activity as well as extensive structure-activity relationship study of the curcumin analogues with various aromatic substituents.


Sign in / Sign up

Export Citation Format

Share Document