Gold Nanoparticles; Potential Nanotheranostic Agent in Breast Cancer: A Comprehensive Review with Systematic Search Strategy

2020 ◽  
Vol 21 (8) ◽  
pp. 579-598
Author(s):  
Shahad Saif Khandker ◽  
Md. Salman Shakil ◽  
Md. Sakib Hossen

Background: Breast cancer is a heterogeneous disease typically prevalent among women and is the second-largest cause of death worldwide. Early diagnosis is the key to minimize the cancer-induced complication, however, the conventional diagnostic strategies have been sluggish, complex, and, to some extent, non-specific. Therapeutic tools are not so convenient and side effects of current therapies offer the development of novel theranostic tool to combat this deadly disease. Objective: This article aims to summarize the advances in the diagnosis and treatment of breast cancer with gold nanoparticles (GNP or AuNP). Methods: A systematic search was conducted in the three popular electronic online databases including PubMed, Google Scholar, and Web of Science, regarding GNP as breast cancer theranostics. Results: Published literature demonstrated that GNPs tuned with photosensitive moieties, nanomaterials, drugs, peptides, nucleotide, peptides, antibodies, aptamer, and other biomolecules improve the conventional diagnostic and therapeutic strategies of breast cancer management with minimum cytotoxic effect. GNP derived diagnosis system assures reproducibility, reliability, and accuracy cost-effectively. Additionally, surface-modified GNP displayed theranostic potential even in the metastatic stage of breast cancer. Conclusion: Divergent strategies have shown the theranostic potential of surface tuned GNPs against breast cancer even in the metastatic stage with minimum cytotoxic effects both in vitro and in vivo.

2020 ◽  
Vol 26 (1) ◽  
pp. 25-36 ◽  
Author(s):  
Yubo Guo ◽  
Beibei Chen ◽  
Xiaohua Pei ◽  
Dongwei Zhang

Background: Radix Stephaniae Tetrandrine (RST), known as FangJi (Pinyin name) in Chinese, is the dried root of Stephania tetrandra S.Moore, and has been prescribed in combination with other herbs to treat cardiovascular diseases and breast cancer in traditional Chinese medicine (TCM) clinical trials. Objective: The aim of the review is to provide a comprehensive evaluation about the application of RST in breast cancer management in TCM clinical trials, its ingredients, and its action on preventing the development of breast cancer in vitro and in vivo studies. Methods: Literature sources used were Pubmed, CNKI.net, Cqvip.com, and the Web of Science. For the inquiry, keywords such as Fangji, breast cancer, clinical trials, Radix Stephaniae Tetrandrine, tetrandrine, and fangchinoline were used in various combinations. About 150 research papers and reviews were consulted. Results: In TCM, RST exhibited the anti-tumor ability through its action on the bladder and lungs through dispersing phlegm and blood stasis. 10 clinical trials were identified which used RST in combination with other herbs to treat breast cancer. On average, the trials were characterized by high efficacy (>85%) and low toxicity. However, most of the clinical trials are characterized as small patient samples, poor design, and different combinations of herbs in prescriptions. To date, more and more compounds have been isolated from this plant. RST exhibited anti-tumor activities by targeting reversing multidrug resistance, inhibiting cell proliferation, inducing apoptosis, preventing tumor angiogenesis, anti-oxidation, anti-inflammation, and enhancing the sensitization and attenuating the toxicity of radiotherapy. Conclusion: The successful applications of RST in TCM clinical trials and preclinical experiments to beating breast cancer will provide potent lead compounds in the identification of novel anti-cancer drugs, which further contributes to the scientific exploration of functions of RST in TCM.


2012 ◽  
Vol 19 (2) ◽  
pp. 181-195 ◽  
Author(s):  
Nathan R West ◽  
Leigh C Murphy ◽  
Peter H Watson

The most important clinical biomarker for breast cancer management is oestrogen receptor alpha (ERα). Tumours that express ER are candidates for endocrine therapy and are biologically less aggressive, while ER-negative tumours are largely treated with conventional chemotherapy and have a poor prognosis. Despite its significance, the mechanisms regulating ER expression are poorly understood. We hypothesised that the inflammatory cytokine oncostatin M (OSM) can downregulate ER expression in breast cancer. Recombinant OSM potently suppressed ER protein and mRNA expression in vitro in a dose- and time-dependent manner in two human ER+ breast cancer cell lines, MCF7 and T47D. This was dependent on the expression of OSM receptor beta (OSMRβ) and could be blocked by inhibition of the MEKK1/2 mitogen-activated protein kinases. ER loss was also necessary for maximal OSM-induced signal transduction and migratory activity. In vivo, high expression of OSM and OSMR mRNA (determined by RT-PCR) was associated with reduced ER (P<0.01) and progesterone receptor (P<0.05) protein levels in a cohort of 70 invasive breast cancers. High OSM and OSMR mRNA expression was also associated with low expression of ESR1 (ER, P<0.0001) and ER-regulated genes in a previously published breast cancer gene expression dataset (n=321 cases). In the latter cohort, high OSMR expression was associated with shorter recurrence-free and overall survival in univariate (P<0.0001) and multivariate (P=0.022) analyses. OSM signalling may be a novel factor causing suppression of ER and disease progression in breast cancer.


Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Tânia Ferreira-Gonçalves ◽  
Maria Manuela Gaspar ◽  
João M. P. Coelho ◽  
Vanda Marques ◽  
Ana S. Viana ◽  
...  

Breast cancer is a high-burden malignancy for society, whose impact boosts a continuous search for novel diagnostic and therapeutic tools. Among the recent therapeutic approaches, photothermal therapy (PTT), which causes tumor cell death by hyperthermia after being irradiated with a light source, represents a high-potential strategy. Furthermore, the effectiveness of PTT can be improved by combining near infrared (NIR) irradiation with gold nanoparticles (AuNPs) as photothermal enhancers. Herein, an alternative synthetic method using rosmarinic acid (RA) for synthesizing AuNPs is reported. The RA concentration was varied and its impact on the AuNPs physicochemical and optical features was assessed. Results showed that RA concentration plays an active role on AuNPs features, allowing the optimization of mean size and maximum absorbance peak. Moreover, the synthetic method explored here allowed us to obtain negatively charged AuNPs with sizes favoring the local particle accumulation at tumor site and maximum absorbance peaks within the NIR region. In addition, AuNPs were safe both in vitro and in vivo. In conclusion, the synthesized AuNPs present favorable properties to be applied as part of a PTT system combining AuNPs with a NIR laser for the treatment of breast cancer.


2019 ◽  
Vol 20 (11) ◽  
pp. 2773 ◽  
Author(s):  
Coralie Poulard ◽  
Julien Jacquemetton ◽  
Olivier Trédan ◽  
Pascale A. Cohen ◽  
Julie Vendrell ◽  
...  

Endocrine therapies targeting oestrogen signalling have significantly improved breast cancer management. However, their efficacy is limited by intrinsic and acquired resistance to treatment, which remains a major challenge for oestrogen receptor α (ERα)-positive tumours. Though many studies using in vitro models of endocrine resistance have identified putative actors of resistance, no consensus has been reached. We demonstrated previously that oestrogen non-genomic signalling, characterized by the formation of the ERα/Src/PI3K complex, is activated in aggressive breast cancers (BC). We wondered herein whether the activation of this pathway is also involved in resistance to endocrine therapies. We studied the interactions between ERα and Src or PI3K by proximity ligation assay (PLA) in in-vitro and in-vivo endocrine therapy-resistant breast cancer models. We reveal an increase in ERα/Src and ERα/PI3K interactions in patient-derived xenografts (PDXs) with acquired resistance to tamoxifen, as well as in tamoxifen-resistant MCF-7 cells compared to parental counterparts. Moreover, no interactions were observed in breast cancer cells resistant to other endocrine therapies. Finally, the use of a peptide inhibiting the ERα–Src interaction partially restored tamoxifen sensitivity in resistant cells, suggesting that such components could constitute promising targets to circumvent resistance to tamoxifen in BC.


2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


2014 ◽  
Author(s):  
Raul M Luque ◽  
Mario Duran-Prado ◽  
David Rincon-Fernandez ◽  
Marta Hergueta-Redondo ◽  
Michael D Culler ◽  
...  

Author(s):  
S Farahani ◽  
N Riyahi Alam ◽  
S Haghgoo ◽  
M Khoobi ◽  
Gh Geraily ◽  
...  

Background: Numerous unique characteristics of the nanosized gold, including high atomic number, low toxicity, and high biocompatibility make it one of the most appropriate nanostructures to boost radiotherapy efficacy. Many in-vivo and in-vitro investigations have indicated that gold nanoparticles (AuNPs) can significantly increase tumor injuries in low kilovoltage radiotherapy. While deep-lying tumors require much higher energy levels with greater penetration power, and investigations carried out in megavoltage energy range show contradictory results.Objective: In this study, we quantitatively assess and compare dose enhancement factors (DEFs) obtained through AuNPs under radiation of Cobalt-60 source (1.25MeV) versus Iridium-192 source (0.380 KeV) using MAGAT gel dosimeter.Material and Methods: MAGAT polymer gel in both pure and combined with 0.2 mM AuNPs was synthesized. In order to quantify the effect of energy on DEF, irradiation was carried out by Co-60 external radiotherapy and Ir-192 internal radiotherapy. Finally, readings of irradiated and non-irradiated gels were performed by MR imaging.Result: The radiation-induced R2 (1/T2) changes of the gel tubes doped with AuNPs compared to control samples, upon irradiation of beams released by Ir-192 source showed a significant dose enhancement (15.31% ±0.30) relative to the Co-60 external radiotherapy (5.85% ±0.14).Conclusion: This preliminary study suggests the feasibility of using AuNPs in radiation therapy (RT), especially in low-energy sources of brachytherapy. In addition, MAGAT polymer gel, as a powerful dosimeter, could be used for 3D visualization of radiation dose distribution of AuNPs in radiotherapy.


Sign in / Sign up

Export Citation Format

Share Document