Methylation of ZNF331 Promotes Cell Invasion and Migration in Human Esophageal Cancer

2015 ◽  
Vol 16 (4) ◽  
pp. 322-328 ◽  
Author(s):  
Suzhen Jiang ◽  
Enqiang Linghu ◽  
Qimin Zhan ◽  
Weidong Han ◽  
Mingzhou Guo
2020 ◽  
Vol 16 ◽  
Author(s):  
Vibhavana Singh ◽  
Rakesh Reddy ◽  
Antarip Sinha ◽  
Venkatesh Marturi ◽  
Shravani Sripathi Panditharadyula ◽  
...  

: Diabetes and breast cancer are pathophysiologically similar and clinically established diseases that co-exist with a wider complex similar molecular signalling and having similar set of risk factors. Insulin plays a pivotal role for invasion and migration of breast cancer cells. Several ethnopharmacological evidences light the concomitant anti-diabetic and anti-cancer activity of medicinal plant and phytochemicals against breast tumor of patients with diabetes. This present article reviewed the findings on medicinal plants and phytochemicals with concomitant anti-diabetic and anti-cancer effects reported in scientific literature to facilitate the development of dual-acting therapies against diabetes and breast cancer. The schematic tabular form of published literatures on medicinal plants (63 plants belongs to 45 families) concluded the dynamics of phytochemicals against diabetes and breast tumor that could be explored further for the discovery of therapies for controlling of breast cancer cell invasion and migration in patient with diabetes.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ding Zhu ◽  
Xueshuang Huang ◽  
Fang Liang ◽  
Lijing Zhao

This article has been retracted. Please see the Retraction Notice for more detail: 10.1186/s13048-020-00747-z


2021 ◽  
Vol 20 ◽  
pp. 153303382110330
Author(s):  
Chuangui Chen ◽  
Zhao Ma ◽  
Hongjing Jiang

Epithelial-mesenchymal transition (EMT) is a key step in tumor invasion and distant metastasis. Abundant evidence has documented that exosomes can mediate EMT of tumor cells and endow them with the ability of invasion and migration. However, there are few studies focusing on whether EMT can reverse the secretion of exosomes. In this study, 2 esophageal cancer cells (FLO-1 and SK-GT-4) were selected to compare the migration ability and EMT activation, and to further analyze the secretion ability of exosomes of the 2 cell lines. According to the results, inhibited activation of EMT in FLO-1 cells with relatively high migration ability could effectively reduce the secretion of exosomes. Besides, in SK-GT-4 cells, EMT activation induced by TGF-β could promote the secretion of exosomes. FLO-1 cell derived exosomes exhibited a paracrine effect of promoting the migration of SK-GT-4 cells, and the use of EMT inhibitors could weaken this ability. Furthermore, inhibition of EMT could change the relative content of some miRNAs in exosomes, with a particularly significant downregulation in the expression of miR-196-5p, miR-21-5p and miR-194-5p. Significantly, artificial transfection of the 3 miRNAs into exosomes by electroporation resulted in the recovery of migration-promoting effect of exosomes. Subsequent experiments further revealed that the effect of EMT on these miRNAs could be explained by the intracellular transcription level or the specific sorting mechanism of exosomes. To sum up, our study undoubtedly reveals that EMT has a regulatory effect on exosomes in the quantity and contents in esophageal cancer cells. Significantly, findings in our study provide experimental evidence for the interaction of EMT with the secretion and sorting pathway of exosomes, and also give a new direction for the further study of tumor metastasis.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hua Luo ◽  
Yukun Zhang ◽  
Guangmei Qin ◽  
Bing Jiang ◽  
Lili Miao

Abstract Background MCM3AP-AS1 is a recently characterized lncRNA playing an oncogenic role in several cancers. However, its role in lung cancer remains unknown. Here, we aimed to explore the functions of MCM3AP-AS1 in small cell lung cancer (SCLC) and the possible underlying mechanisms. Methods MCM3AP-AS1 and ROCK1 levels in SCLC patients were analyzed by qPCR. RNA pull-down and luciferase assays were performed to analyze the interaction between MCM3AP-AS1 and miR-148a. ROCK1 mRNA and protein levels were detected by qPCR and Western blot, respectively. Cell invasion and migration were analyzed by Transwell assays. Results MCM3AP-AS1 was upregulated in patients with SCLC, and a high MCM3AP-AS1 level was accompanied by a low survival rate. The binding of MCM3AP-AS1 to miR-148a predicted by bioinformatics analysis was verified by RNA pull-down and luciferase assays. However, MCM3AP-AS1 and miR-148a did not affect each other’s expression. ROCK1 was upregulated in SCLC tissues and positively correlated with MCM3AP-AS1. In SCLC cells, MCM3AP-AS1 overexpression increased ROCK1 and promoted cancer cell invasion and migration, while miR-148a overexpression showed the opposite effects and attenuated the effects of MCM3AP-AS1 overexpression on ROCK1 expression and cell behaviors. Conclusions MCM3AP-AS1 sponges miR-148a, thereby increasing SCLC cell invasion and migration via upregulating ROCK1 expression.


Sign in / Sign up

Export Citation Format

Share Document