Design, Synthesis of New Pyridine and Pyrimidine Sugar Compounds as Antagonists Targeting the ERα via Structure-Based Virtual Screening

2019 ◽  
Vol 19 (5) ◽  
pp. 395-409 ◽  
Author(s):  
Ibrahim F. Nassar ◽  
Wael A. El-Sayed ◽  
Tamer I.M. Ragab ◽  
Al Shimaa Gamal Shalaby ◽  
Ahmed B.M. Mehany

Background: New aryl substituted cyclohepta[b]pyridine and cyclohepta[d]pyrimidine derivatives were synthesized. The sugar hydrazones of the synthesized pyridine and pyrimidine compounds were also prepared. </P><P> Method: In addition, the 1,3,4-oxadiazolyl acyclic C-nucleoside analogs of the pyridine system were prepared. The hemolytic, prebiotic, anticancer and antimicrobial activities of some of the synthesized compounds were also studied. Compounds 10 and 12 showed high activity against MCF-7, HEPG-2 and HCT-116 cell lines with IC50 at range 3.56-8.55 &#181;g/mL. In addition, the synthesized condensed thiopyrimidine derivative 10 exhibited more potent bactericidal activity while compound 7 demonstrated potent antifungal activity against Aspergillus niger. Furthermore, the synthetic compounds of the pyrimidine base promoted the growth of lactic acid bacteria. </P><P> Results: The predicted binding patterns of three of the prepared derivatives as possible antagonists against ERα were investigated which showed good binding patterns.

2021 ◽  
Author(s):  
Khaled El-Adl ◽  
Abdel-Ghany A. El-Helby ◽  
Helmy Sakr ◽  
Alaa Elwan

In view of their DNA intercalation activities as anticancer agents, 17 novel [1,2,4]triazolo[4,3-a]quinoxaline derivatives have been designed, synthesized and evaluated against HepG2, HCT-116 and MCF-7 cells.


2021 ◽  
Vol 14 (9) ◽  
pp. 866
Author(s):  
Abdulraheem S. A. Almalki ◽  
Syed Nazreen ◽  
Azizah M. Malebari ◽  
Nada M. Ali ◽  
Ahmed A. Elhenawy ◽  
...  

A library of 1,2,3-triazole-incorporated thymol-1,3,4-oxadiazole derivatives (6–18) hasbeen synthesized and tested for anticancer and antimicrobial activities. Compounds 7, 8, 9, 10, and 11 exhibited significant antiproliferative activity. Among these active derivatives, compound 2-(4-((5-((2-isopropyl-5-methylphenoxy)methyl)-1,3,4-oxadiazol-2-ylthio)methyl)-1H-1,2,3-triazol-1-yl)phenol (9) was the best compound against all three tested cell lines, MCF-7 (IC50 1.1 μM), HCT-116 (IC50 2.6 μM), and HepG2 (IC50 1.4 μM). Compound 9 was found to be better than the standard drugs, doxorubicin and 5-fluorouracil. These compounds showed anticancer activity through thymidylate synthase inhibition as they displayed significant TS inhibitory activity with IC50 in the range 1.95–4.24 μM, whereas the standard drug, Pemetrexed, showed IC50 7.26 μM. The antimicrobial results showed that some of the compounds (6, 7, 9, 16, and 17) exhibited good inhibition on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The molecular docking and simulation studies supported the anticancer and antimicrobial data. It can be concluded that the synthesized 1,2,3-triazole tethered thymol-1,3,4-oxadiazole conjugates have both antiproliferative and antimicrobial potential.


2020 ◽  
Vol 16 (6) ◽  
pp. 750-760
Author(s):  
Mona A. Hosny ◽  
Yasser H. Zaki ◽  
Wafaa A. Mokbel ◽  
Abdou O. Abdelhamid

Background: Pyrazole and its derivatives are known to exhibit significant biological and pharmacological activities such as anticancer, anti-inflammatory, antioxidant, antibacterial, analgesic, antiviral, antimicrobial, antifungal, anti-glycemic, antiamoebic, and antidepressive. Considering the immense biological properties, pyrazole is one of the most widely studied nitrogen- containing heterocyclic nuclei. Fused pyrazole derivatives are composed of the pyrazole nucleus attached to other heterocyclic moieties. Objective: The objective of this article is the synthesis of some new pyrazolo[1,5-a]pyrimidine and pyrazolo[5,1-c]1,2,4-triazine derivatives with potential anticancer and antimicrobial activities. Methods: The in vitro growth inhibitory rates (%) and inhibitory growth activity (as measured by IC50) of the newly synthesized compounds were determined against the MCF-7 human breast carcinoma cell line in comparison with the well-known anticancer drug doxorubicin as the standard, using the MTT viability assay. The data generated were used to plot a dose-response curve from which the concentration (μM) of tested compounds required to kill 50% of the cell population (IC50) was determined. Cytotoxic activity was expressed as the mean IC50 of three independent experiments. The difference between inhibitory activities of all compounds with different concentrations was statistically significant p < 0.001. All compounds were structurally characterized by different spectroscopic techniques EI-MS, 1H-NMR, and 13C-NMR, and evaluated for their anticancer and antimicrobial activities (antibacterial and antifungal). Results: Several pyrazolo[1,5-a]pyrimidine derivatives were synthesized from the reaction of 2-(4- (5-amino-1H-pyrazol-3-yl)phenyl)-1H-indene-1,3(2H)-dione with the appropriate active methylene compounds in boiling ethanol. Also, pyrazolo[5,1-c]triazines were obtained through the reaction of 2-(4-(5-(chlorodiazenyl)-1H-pyrazol-3-yl)phenyl)-1H-indene-1,3(2H)-dione with various active methylene compounds in ethanol containing sodium acetate at 0-5 °C. The structures of the newly synthesized compounds were elucidated on the basis of elemental analysis, spectral data, and alternative synthetic routes whenever possible. The newly synthesized compounds were evaluated for their antitumor activity against a breast cancer cell line (MCF-7) and a human colon cancer cell line (HCT-116). The results revealed that the tested compounds showed high variation in the inhibitory growth rates and activities against the tested tumor cell lines. All newly synthesized compounds screen towards microorganisms e.g. Gram-negative bacteria, Gram-positive bacteria, and Fungi. Conclusions: 2-(4-(5-Amino-1H-pyrazol-3-yl)phenyl)isoindoline-1,3-dione proved to be a useful precursor for the synthesis of various pyrazolo[1,5-a]pyrimidine and pyrazolo[5,1-c]-1,2,4- triazines. The structures of the newly synthesized compounds were confirmed by spectral data and elemental analyses. The newly synthesized compounds were tested in vitro against the MCF-7, HCT-116 human cancer cell line and compared with doxorubicin as the standard, using the MTT viability assay. Most of the tested compounds were found to have moderate to high anticancer activity.


2022 ◽  
Author(s):  
Wen-Yan Wang ◽  
Zihui Yang ◽  
A-Liang Li ◽  
Qing-Song Liu ◽  
Yue Sun ◽  
...  

A series of novel 2-amino-4-aryl-pyrimidine derivatives of ursolic acid were designed, synthesized, and evaluated for their anticancer activities against four cancer cell lines (MCF-7, HeLa, HepG2, and A549) and a...


2021 ◽  
Vol 14 (9) ◽  
pp. 870
Author(s):  
Mohammad Mahboob Alam ◽  
Syed Nazreen ◽  
Abdulraheem S. A. Almalki ◽  
Ahmed A. Elhenawy ◽  
Nawaf I. Alsenani ◽  
...  

A library of novel naproxen based 1,3,4-oxadiazole derivatives (8–16 and 19–26) has been synthesized and screened for cytotoxicity as EGFR inhibitors. Among the synthesized hybrids, compound2-(4-((5-((S)-1-(2-methoxynaphthalen-6-yl)ethyl)-1,3,4-oxadiazol-2-ylthio)methyl)-1H-1,2,3-triazol-1-yl)phenol(15)was the most potent compound against MCF-7 and HepG2cancer cells with IC50 of 2.13 and 1.63 µg/mL, respectively, and was equipotent to doxorubicin (IC50 1.62 µg/mL) towards HepG2. Furthermore, compound 15 inhibited EGFR kinase with IC50 0.41 μM compared to standard drug Erlotinib (IC50 0.30 μM). The active compound induces a high percentage of necrosis towards MCF-7, HePG2 and HCT 116 cells. The docking studies, DFT and MEP also supported the biological data. These results demonstrated that these synthesized naproxen hybrids have EGFR inhibition effects and can be used as leads for cancer therapy.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5983
Author(s):  
Ahdab N. Khayyat ◽  
Khaled O. Mohamed ◽  
Azizah M. Malebari ◽  
Afaf El-Malah

A new series of benzotriazole moiety bearing substituted imidazol-2-thiones at N1 has been designed, synthesized and evaluated for in vitro anticancer activity against the different cancer cell lines MCF-7(breast cancer), HL-60 (Human promyelocytic leukemia), and HCT-116 (colon cancer). Most of the benzotriazole analogues exhibited promising antiproliferative activity against tested cancer cell lines. Among all the synthesized compounds, BI9 showed potent activity against the cancer cell lines such as MCF-7, HL-60 and HCT-116 with IC50 3.57, 0.40 and 2.63 µM, respectively. Compound BI9 was taken up for elaborate biological studies and the HL-60 cells in the cell cycle were arrested in G2/M phase. Compound BI9 showed remarkable inhibition of tubulin polymerization with the colchicine binding site of tubulin. In addition, compound BI9 promoted apoptosis by regulating the expression of pro-apoptotic protein BAX and anti-apoptotic proteins Bcl-2. These results provide guidance for further rational development of potent tubulin polymerization inhibitors for the treatment of cancer.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4899
Author(s):  
Yong-Feng Guan ◽  
Xiu-Juan Liu ◽  
Xin-Ying Yuan ◽  
Wen-Bo Liu ◽  
Yin-Ru Li ◽  
...  

The chalcone and quinoline scaffolds are frequently utilized to design novel anticancer agents. As the continuation of our work on effective anticancer agents, we assumed that linking chalcone fragment to the quinoline scaffold through the principle of molecular hybridization strategy could produce novel compounds with potential anticancer activity. Therefore, quinoline-chalcone derivatives were designed and synthesized, and we explored their antiproliferative activity against MGC-803, HCT-116, and MCF-7 cells. Among these compounds, compound 12e exhibited a most excellent inhibitory potency against MGC-803, HCT-116, and MCF-7 cells with IC50 values of 1.38, 5.34, and 5.21 µM, respectively. The structure–activity relationship of quinoline-chalcone derivatives was preliminarily explored in this report. Further mechanism studies suggested that compound 12e inhibited MGC-803 cells in a dose-dependent manner and the cell colony formation activity of MGC-803 cells, arrested MGC-803 cells at the G2/M phase and significantly upregulated the levels of apoptosis-related proteins (Caspase3/9 and cleaved-PARP) in MGC-803 cells. In addition, compound 12e could significantly induce ROS generation, and was dependent on ROS production to exert inhibitory effects on gastric cancer cells. Taken together, all the results suggested that directly linking chalcone fragment to the quinoline scaffold could produce novel anticancer molecules, and compound 12e might be a valuable lead compound for the development of anticancer agents.


2020 ◽  
Vol 17 (2) ◽  
pp. 151-159
Author(s):  
Tran Nguyen Minh An ◽  
Pham Thai Phuong ◽  
Nguyen Minh Quang ◽  
Nguyen Van Son ◽  
Nguyen Van Cuong ◽  
...  

: A series of novel 1,3-thiazole derivatives (5a-i) with a modified phenothiazine moiety were synthesized and tested against cancer cell line MCF-7 for their cytotoxicity. Most of them (5a-i) were less cytotoxic or had no activity against MCF-7 cancer cell line. Material and Methods: The IC50 value of compound (4) was 33.84 μM. The compounds (5a-i) were also evaluated for antimicrobial activities, but no significant activity was observed. The antioxidant activity was conducted for target compounds (5a-i). The IC50 value of compound (5b) was 0.151mM. Results: The total amount of energy, ACE (atomic contact energy), energy of receptor (PDB: 5G5J), and ligand interaction of structure (4) were found to be 22.448 Kcal.mol-1 , -247.68, and -91.91 Kcal.mol-1, respectively. The structure (4) is well binded with the receptor because the values of binding energy, steric energy, and the number of hydrogen bondings are -91.91, 22.448 kcal.mol-1, and 2, respectively. It shows that structure (4) has good cytotoxicity with MCF-7 in vitro. Conclusion: The increasing of docking ability of structures (5a-i) with the receptor is presented in increasing order as (5f)>(5e)>(5g)>(5a)>(5b)>(5d)>(5c)>(5i)>(5h). The structure bearing substitution as thiosemicarbazone (4), nitrogen heterocyclic (5f), halogen (5e), and azide (5g) showed good cytotoxicity activity in vitro.


Sign in / Sign up

Export Citation Format

Share Document