Peptide5 attenuates rtPA related brain microvascular endothelial cells reperfusion injury via the Wnt/β-catenin signalling pathway

2021 ◽  
Vol 18 ◽  
Author(s):  
Weimin Ren ◽  
Chuyi Huang ◽  
Heling Chu ◽  
Yuping Tang ◽  
Xiaobo Yang

Aims: Brain vascular endothelial cell dysfunction after rtPA treatment is a significant factor associated with poor prognosis, suggesting that alleviation of rtPA-related endothelial cell injury may represent a potential beneficial strategy along with rtPA thrombolysis. Background: Thrombolysis with recombinant tissue plasminogen activator (rtPA) is beneficial for acute ischemic stroke but may increase the risk of hemorrhagic transformation (HT), which is considered ischemia-reperfusion injury. The underlying reason may contribute to brain endothelial injury and dysfunction related to rtPA against ischemic stroke. As previous studies have demonstrated that transiently blocked Cx43 using peptide5 (Cx43 mimetic peptide) during retinal ischemia reduced vascular leakage, it is necessary to know whether this might help decrease side effect of rtPA within the therapeutic time window. Objective: This study aims to investigate the effects of peptide5 on rtPA-related cell injury during hypoxia/reoxygenation (H/R) within the therapeutic time window. Methods: In this study, we established a cell hypoxia/reoxygenation H/R model in cultured primary rat brain microvascular endothelial cells (RBMECs) and evaluated endothelial cell death and permeability after rtPA treatment with or without transient peptide5. In addition, we also investigated the potential signaling pathway to explore the underlying mechanisms preliminarily. Results: The results showed that peptide5 inhibited rtPA-related endothelial cell death and permeability. It also slightly increased tight junction (ZO-1, occluding, claudin-5) and β-catenin mRNA expression, demonstrating that peptide5 might attenuate endothelial cell injury by regulating the Wnt/β-catenin pathway. The following bioinformatic exploration from the GEO dataset GSE37239 was also consistent with our findings. Conclusion: This study showed that the application of peptide5 maintained cell viability and permeability associated with rtPA treatment, revealing a possible pathway that could be exploited to limit rtPA-related endothelial cell injury during ischemic stroke. Furthermore, the altered Wnt/β-catenin signaling pathway demonstrated that signaling pathways associated with Cx43 might have potential applications in the future. This study may provide a new way to attenuate HT and assist the application of rtPA in ischemic stroke.

2005 ◽  
Vol 73 (5) ◽  
pp. 2704-2708 ◽  
Author(s):  
James Sissons ◽  
Kwang Sik Kim ◽  
Monique Stins ◽  
Samantha Jayasekera ◽  
Selwa Alsam ◽  
...  

ABSTRACT Granulomatous amoebic encephalitis due to Acanthamoeba castellanii is a serious human infection with fatal consequences, but it is not clear how the circulating amoebae interact with the blood-brain barrier and transmigrate into the central nervous system. We studied the effects of an Acanthamoeba encephalitis isolate belonging to the T1 genotype on human brain microvascular endothelial cells, which constitute the blood-brain barrier. Using an apoptosis-specific enzyme-linked immunosorbent assay, we showed that Acanthamoeba induces programmed cell death in brain microvascular endothelial cells. Next, we observed that Acanthamoeba specifically activates phosphatidylinositol 3-kinase. Acanthamoeba-mediated brain endothelial cell death was abolished using LY294002, a phosphatidylinositol 3-kinase inhibitor. These results were further confirmed using brain microvascular endothelial cells expressing dominant negative forms of phosphatidylinositol 3-kinase. This is the first demonstration that Acanthamoeba-mediated brain microvascular endothelial cell death is dependent on phosphatidylinositol 3-kinase.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yubin Chen ◽  
Fen Liu ◽  
Fei Han ◽  
Lizhi Lv ◽  
Can-e Tang ◽  
...  

Objectives. Endothelial cell injury is a critical pathological change during the development of atherosclerosis. Here, we explored the effect of omentin-1 on free fatty acid- (FFA-) induced endothelial cell injury. Methods. An FFA-induced endothelial cell injury model was established to investigate the role of omentin-1 in this process. Cell proliferation was analyzed with the Cell Counting Kit assay and flow cytometry. Scratch and transwell assays were used to evaluate cell migration. Factors secreted by endothelial cells after injury were detected by western blotting, reverse-transcription quantitative polymerase chain reaction, and cellular fluorescence assay. Results. Omentin-1 rescued the FFA-induced impaired proliferation and migration capabilities of human umbilical vein endothelial cells (HUVECs). It decreased the number of THP-1 cells attached to HUVECs in response to injury and inhibited the FFA-induced proinflammatory state of HUVECs. Conclusion. Omentin-1 could partly ameliorate FFA-induced endothelial cell injury.


2021 ◽  
Author(s):  
Kaiying He ◽  
Zhan Chen ◽  
Jing Zhao ◽  
Yang He ◽  
Rongrong Deng ◽  
...  

Abstract Objective: To investigate the role of microRNA-155-5p (miR-155-5p) on apoptosis and inflammatory response in human glomerular endothelial cells (HRGEC) cultured with high glucose.Methods: The primary human glomerular endothelial cells (HRGEC) were studied, QPCR, WB , IF were used to detect cell morphology, target gene ETS-1 (ETS-1), downstream factors VCAM-1 and MCP-1, and apoptosis of cells in each group after high glucose stimulation and transfection with miR-155 overexpression or inhibitor.Results:1.The expression of inflammatory factors and apoptosis of HRGEC cells increased under high glucose stimulation.2.The overexpression of miR-155 in HRGEC cells under high glucose stimulation decreased the expression of ETS-1, while the expression of ETS-1 increased when miR-155 was inhibited. These results suggest that miR-155 may be involved in endothelial cell injury by negatively regulating the expression of ETS-1.3.HRGEC cells were transfected with miR-155 mimic and ETS-1 siRNA with high glucose stimulation. The expression of ETS-1 was positively correlated with the expression of downstream factors VCAM-1 and MCP-1. These results suggest that ETS-1 can mediate endothelial cell inflammation by regulating VCAM-1 and MCP-1.


2008 ◽  
Vol 205 (2) ◽  
pp. 373-383 ◽  
Author(s):  
Adam E. Mullick ◽  
Katrin Soldau ◽  
William B. Kiosses ◽  
Thomas A. Bell ◽  
Peter S. Tobias ◽  
...  

Toll-like receptors (TLRs) are pattern recognition receptors of innate immunity. TLRs initiate inflammatory pathways that may exacerbate chronic inflammatory diseases like atherosclerosis. En face laser scanning confocal microscopy (LSCM) of isolated aortic segments revealed the distribution of intimal TLR2 expression and the atheroprotective outcomes resulting from a TLR2 deficiency. TLR2 expression was restricted to endothelial cells in regions of disturbed blood flow, such as the lesser curvature region, in atherosclerosis-prone, low-density lipoprotein receptor–deficient (LDLr−/−) mice. Diet-induced hyperlipidemia in LDLr−/− mice increased this regional endothelial TLR2 expression. Bone marrow (BM) reconstitution of LDLr−/− and LDLr−/−TLR2−/− mice created chimeric mice with green fluorescent protein (GFP) expression in BM-derived cells (BMGFP+). Lesser curvature BMGFP+ leukocyte accumulation, lipid accumulation, foam cell generation and endothelial cell injury were all increased by hyperlipidemia, whereas hyperlipidemic double mutant BMGFP+LDLr−/−TLR2−/− mice had reduced BMGFP+ leukocyte accumulation, lipid accumulation, foam cells, and endothelial cell injury. This is the first report of in vivo site-specific expression of endothelial cell TLR2. Expression of this receptor on endothelial cells contributed to early atherosclerotic processes in lesion-prone areas of the mouse aorta.


Blood ◽  
2004 ◽  
Vol 103 (6) ◽  
pp. 2143-2149 ◽  
Author(s):  
Leila M. Lopes Bezerra ◽  
Scott G. Filler

Abstract Invasive aspergillosis causes significant mortality among patients with hematologic malignancies. This infection is characterized by vascular invasion and thrombosis. To study the pathogenesis of invasive aspergillosis, we investigated the interactions of Aspergillus fumigatus conidia and hyphae with endothelial cells in vitro. We found that both forms of the organism induced endothelial cell microfilament rearrangement and subsequent endocytosis. Conidia were endocytosed 2-fold more avidly than hyphae, and endocytosis was independent of fungal viability. Endocytosed conidia and hyphae caused progressive endothelial cell injury after 4 hours of infection. Live conidia induced more endothelial cell injury than did live hyphae. However, endothelial cell injury caused by conidia was dependent on fungal viability, whereas injury caused by hyphae was not, indicating that conidia and hyphae injure endothelial cells by different mechanisms. Neither live nor killed conidia increased tissue factor activity of endothelial cells. In contrast, both live and killed hyphae stimulated significant endothelial cell tissue factor activity, as well as the expression of tissue factor antigen on the endothelial cell surface. These results suggest that angioinvasion and thrombosis caused by A fumigatus hyphae in vivo may be due in part to endothelial cell invasion, induction of injury, and stimulation of tissue factor activity.


Lupus ◽  
2019 ◽  
Vol 28 (3) ◽  
pp. 347-358 ◽  
Author(s):  
M Yuan ◽  
Y Tan ◽  
Y Wang ◽  
S X Wang ◽  
F Yu ◽  
...  

Our study aims to evaluate the endothelial cell-podocyte crosstalk in proliferative lupus nephritis (LN). The semi-quantification scores of glomerular endothelial cell injury and the foot process width (FPW) were processed in 110 proliferative LN patients. Podocytes were stimulated with LN-derived IgG. Glomerular endothelial cells were treated with podocyte-conditioned medium (PCM), and then podocytes were incubated with endothelial cell–conditioned medium (ECM). The levels of vascular endothelial growth factor-A (VEGF-A) in PCM and endothelin-1 in ECM were analyzed, and the injury of podocyte and glomerular endothelial cells were further evaluated. The pathological score of glomerular endothelial cell injury was correlated with FPW in LN complicated with thrombotic microangiopathy. In vitro study showed the following: 1. Stimulation of podocytes by IgG from LN led to decline in the expression of nephrin with cytoskeleton rearrangement, and reduction of VEGF-A levels. 2. Exposure of glomerular endothelial cells to PCM incubated with LN-derived IgG (PCM-LN) induced more endothelin-1 secretion and disruption of intercellular tight junction. 3. Exposure of podocytes to ECM stimulated with PCM-LN could induce cytoskeleton redistribution with decrease of nephrin. In conclusion, the pathological glomerular endothelial cell lesions were associated with FPW and the VEGF-endothelin-1 system might play a critical role in the endothelial cell-podocyte crosstalk in LN.


2001 ◽  
Vol 69 (2) ◽  
pp. 845-852 ◽  
Author(s):  
Gregor Zysk ◽  
Barbara Katharina Schneider-Wald ◽  
Jae Hyuk Hwang ◽  
Levente Bejo ◽  
Kwang Sik Kim ◽  
...  

ABSTRACT In pneumococcal meningitis it is assumed that bacteria cross the blood-brain barrier (BBB), which consists mainly of cerebral endothelial cells. The effect of Streptococcus pneumoniaeon the BBB was investigated with an in vitro BBB model using a human brain microvascular endothelial cell line (HBMEC) and primary cultures of bovine brain microvascular endothelial cells (BBMEC). Within a few hours of incubation with pneumococci, rounding and detachment of the HBMEC were observed, and the transendothelial electrical resistance of the BBMEC monolayer decreased markedly. An S. pneumoniaemutant deficient in pneumolysin did not affect the integrity of the endothelial cell monolayer. Neither cell wall fragments nor isolated pneumococcal cell walls induced changes of endothelial cell morphology. However, purified pneumolysin caused endothelial cell damage comparable to that caused by the viable pneumococci. The cell detachment was dependent on de novo protein synthesis and required the activities of caspase and tyrosine kinases. The results show that pneumolysin is an important component for damaging the BBB and may contribute to the entry of pneumococci into the cerebral compartment and to the development of brain edema in pneumococcal meningitis.


Sign in / Sign up

Export Citation Format

Share Document