Oncogenic Signaling Pathways Activated by RON Receptor Tyrosine Kinase

2003 ◽  
Vol 3 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Alla Danilkovitch-Miagkova
2020 ◽  
Vol 20 ◽  
Author(s):  
Ammad Ahmad Farooqi ◽  
Evangelia Legaki ◽  
Maria Gazouli ◽  
Silvia Rinaldi ◽  
Rossana Berardi

: Central dogma of molecular biology has remained cornerstone of classical molecular biology but serendipitous discovery of microRNAs (miRNAs) in nematodes paradigmatically shifted our current understanding of the intricate mech-anisms which occur during transitions from transcription to translation. Discovery of miRNA captured tremendous attention and appreciation and we had witnessed an explosion in the field of non-coding RNAs. Ground-breaking discoveries in the field of non-coding RNAs have helped in better characterization of microRNAs and long non-coding RNAs (LncRNAs). There is an ever-increasing list of miRNA targets which are regulated by MALAT1 to stimulate or repress expression of tar-get genes. However, in this review our main focus is to summarize mechanistic insights related to MALAT1-mediated regu-lation of oncogenic signaling pathways. We have discussed how MALAT1 modulated TGF/SMAD and Hippo pathways in various cancers. We have also comprehensively summarized how JAK/STAT and Wnt/β-catenin pathways stimulated MALAT1 expression and consequentially how MALAT1 potentiated these signaling cascades to promote cancer. MALAT1 research has undergone substantial broadening however, there is still a need to identify additional mechanisms. MALAT1 is involved in multi-layered regulation of multiple transduction cascades and detailed analysis of different pathways will be helpful in getting a step closer to individualized medicine.


2020 ◽  
Vol 12 ◽  
pp. 175883592092006
Author(s):  
Hang-Ping Yao ◽  
Sreedhar Reddy Suthe ◽  
Xiang-Min Tong ◽  
Ming-Hai Wang

The recepteur d’origine nantais (RON) receptor tyrosine kinase, belonging to the mesenchymal-to-epithelial transition proto-oncogene family, has been implicated in the pathogenesis of cancers derived from the colon, lung, breast, and pancreas. These findings lay the foundation for targeting RON for cancer treatment. However, development of RON-targeted therapeutics has not gained sufficient attention for the last decade. Although therapeutic monoclonal antibodies (TMABs) targeting RON have been validated in preclinical studies, results from clinical trials have met with limited success. This outcome diminishes pharmaceutical enthusiasm for further development of RON-targeted therapeutics. Recently, antibody–drug conjugates (ADCs) targeting RON have drawn special attention owing to their increased therapeutic activity. The rationale for developing anti-RON ADCs is based on the observation that cancer cells are not sufficiently addicted to RON signaling for survival. Thus, TMAB-mediated inhibition of RON signaling is ineffective for clinical application. In contrast, anti-RON ADCs combine a target-specific antibody with potent cytotoxins for cancer cell killing. This approach not only overcomes the shortcomings in TMAB-targeted therapies but also holds the promise for advancing anti-RON ADCs into clinical trials. In this review, we discuss the latest advancements in the development of anti-RON ADCs for targeted cancer therapy including drug conjugation profile, pharmacokinetic properties, cytotoxic effect in vitro, efficacy in tumor models, and toxicological activities in primates.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Mohammad Burhan Uddin ◽  
Zhishan Wang ◽  
Chengfeng Yang

AbstractThe m6A RNA methylation is the most prevalent internal modification in mammalian mRNAs which plays critical biological roles by regulating vital cellular processes. Dysregulations of the m6A modification due to aberrant expression of its regulatory proteins are frequently observed in many pathological conditions, particularly in cancer. Normal cells undergo malignant transformation via activation or modulation of different oncogenic signaling pathways through complex mechanisms. Accumulating evidence showing regulation of oncogenic signaling pathways at the epitranscriptomic level has added an extra layer of the complexity. In particular, recent studies demonstrated that, in many types of cancers various oncogenic signaling pathways are modulated by the m6A modification in the target mRNAs as well as noncoding RNA transcripts. m6A modifications in these RNA molecules control their fate and metabolism by regulating their stability, translation or subcellular localizations. In this review we discussed recent exciting studies on oncogenic signaling pathways that are modulated by the m6A RNA modification and/or their regulators in cancer and provided perspectives for further studies. The regulation of oncogenic signaling pathways by the m6A modification and its regulators also render them as potential druggable targets for the treatment of cancer.


2021 ◽  
Vol 166 ◽  
pp. 105487
Author(s):  
Hardeep Singh Tuli ◽  
Sonam Mittal ◽  
Mariam Loka ◽  
Vaishali Aggarwal ◽  
Diwakar Aggarwal ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 513 ◽  
Author(s):  
Marina Leite ◽  
Miguel S. Marques ◽  
Joana Melo ◽  
Marta T. Pinto ◽  
Bruno Cavadas ◽  
...  

Helicobacter pylori, a stomach-colonizing Gram-negative bacterium, is the main etiological factor of various gastroduodenal diseases, including gastric adenocarcinoma. By establishing a life-long infection of the gastric mucosa, H. pylori continuously activates host-signaling pathways, in particular those associated with receptor tyrosine kinases. Using two different gastric epithelial cell lines, we show that H. pylori targets the receptor tyrosine kinase EPHA2. For long periods of time post-infection, H. pylori induces EPHA2 protein downregulation without affecting its mRNA levels, an effect preceded by receptor activation via phosphorylation. EPHA2 receptor downregulation occurs via the lysosomal degradation pathway and is independent of the H. pylori virulence factors CagA, VacA, and T4SS. Using small interfering RNA, we show that EPHA2 knockdown affects cell–cell and cell–matrix adhesion, invasion, and angiogenesis, which are critical cellular processes in early gastric lesions and carcinogenesis mediated by the bacteria. This work contributes to the unraveling of the underlying mechanisms of H. pylori–host interactions and associated diseases. Additionally, it raises awareness for potential interference between H. pylori infection and the efficacy of gastric cancer therapies targeting receptors tyrosine kinases, given that infection affects the steady-state levels and dynamics of some receptor tyrosine kinases (RTKs) and their signaling pathways.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Edward Greenfield ◽  
Erin Griner ◽  

The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of 50 papers in the field of cancer biology published between 2010 and 2012. This Registered Report describes the proposed replication plan of key experiments from ‘Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors’ by Wilson and colleagues, published in Nature in 2012 (<xref ref-type="bibr" rid="bib20">Wilson et al., 2012</xref>). The experiments that will be replicated are those reported in Figure 2B and C. In these experiments, Wilson and colleagues show that sensitivity to receptor tyrosine kinase (RTK) inhibitors can be bypassed by various ligands through reactivation of downstream signaling pathways (Figure 2A; <xref ref-type="bibr" rid="bib20">Wilson et al., 2012</xref>), and that blocking the receptors for these bypassing ligands abrogates their ability to block sensitivity to the original RTK inhibitor (Figure 2C; <xref ref-type="bibr" rid="bib20">Wilson et al., 2012</xref>). The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange, and the results of the replications will be published by eLife.


Sign in / Sign up

Export Citation Format

Share Document