Synthesis of polyhydroquinolines and 2-amino-4H-chromenes and their alkylene bridging derivatives using Sulfonic acid functionalized heterogeneous nanocatalyst based on modified poly (styrene-alt-maleic anhydride)

2021 ◽  
Vol 18 ◽  
Author(s):  
Shefa Mirani Nezhad ◽  
Seied Ali Pourmousavi ◽  
Ehsan Nazarzadeh Zare

: A highly efficient heterogeneous nanocatalyst based on modified poly (styrene-alt-maleic anhydride) (MPSAMA) in three steps was fabricated. Then, the MPSAMA surface was modified using chlorosulfonic acid (CAS) to achieve a sulfonated MPSAMA (SMPSAMA) with high acidity and efficiency. FT-IR spectroscopy, CHNS analysis, FESEM, and TGA were employed to characterize the prepared nanocatalyst. The catalytic activity of the SMPSAMA was examined for the formation of the polyhydroquinoline derivatives through Hantzsch condensation and the synthesis of 2-amino-4H-chromene derivatives. This new heterogeneous nanocatalyst has been efficiently used for the synthesis of bifunctional bis polyhydroquinoline, and new alkylene bridging bis 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-benzo[b]pyran derivatives.

2017 ◽  
Author(s):  
◽  
Sharista Raghunath

The presence of dyes in effluent poses various environmental as well as health hazards for many organisms. Although various remediation strategies have been implemented to reduce their effect, dyes still manage to infiltrate into the environment and hence new strategies are required to address some of the problems. This study investigated the innovation of two cationic water-soluble polymers viz., Proline-Epichlorohydrin-Ethylenediamine Polymer (PEP) and Thiazolidine-Epichlorohydrin-Ethylenediamine Polymer (TEP) that were used to remediate selected synthetic dyes from synthetic effluent by adsorption and dye reduction. Both polymers were synthesized using monomers of a secondary amine, epichlorohydrin and ethylenediamine and were subsequently characterized and modified and their remediation potential studied. In the first study, PEP was synthesized and characterized by 1H-NMR Spectroscopy, FT-IR Spectroscopy, dynamic light scattering, and thermogravimetric analysis (TGA). Thereafter PEP was modified with bentonite clay, by simple mixing of the reactants, to form a Proline-Epichlorohydrin-Ethylenediamine Polymer-bentonite composite (PRO-BEN); it was characterized by FT-IR Spectroscopy, scanning electron microscopy (SEM)/ energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Adsorption studies were then undertaken with a synthetic effluent containing three textile dyes, viz., Reactive Blue 222 (RB 222), Reactive Red 195 (RR 195) and Reactive Yellow (RY 145). Various conditions were investigated including pH of the solution, temperature, sodium chloride concentration, initial dye concentration and the dosage of adsorbent used. The experimental data for all dyes followed a Langmuir isotherm. The adsorption process was found to be pseudo-second order. According to the thermodynamic parameters, the adsorption of the dyes was classified as physisorption and the reaction was spontaneous and exothermic. The data were also compared using studies with alumina as an adsorbent. Results showed that PRO-BEN exhibited better absorptivity and desorption than alumina making its use a better recyclable remediation strategy for the removal of organic dyes in wastewater treatment plants. In the second study, TEP was synthesized and then characterized by FT-IR Spectroscopy, 1H-NMR Spectroscopy, TGA and DLS. Thereafter, TEP was used to prepare TEP capped gold nanoparticles (TEP-AuNPs). Herein, two methods were investigated: the Turkevich method and an adaptation of the Turkevich method using bagasse extract. The TEP-AuNPs was characterized by FT-IR Spectroscopy, SEM, EDX, DLS and TEM. Thereafter the reduction of each of Allura Red, Congo Red and Methylene Blue was investigated with the TEP-AuNPs for its catalytic activity toward dye reduction. This study showed that the batch of AuNPs prepared by the Turkevich method had higher rates of dye reduction compared with AuNPs prepared using bagasse extract. Also the quantity of TEP used as capping agent greatly influenced the size, shape and surface charge of the nanoparticles as well as their catalytic performance: the Vroman effect explained this behavior of the TEP-AuNPs. It was finally concluded that whilst PRO-BEN, in the first study, showed excellent dye remediation properties, the second study on TEP-AuNPs showed good catalytic activity for the reduction of selected dyes, however, it was more effective at lower polymer concentration. Finally, both materials displayed good potential for the clean-up of selected synthetic dyes from synthetic effluents.


2011 ◽  
Vol 233-235 ◽  
pp. 1575-1580 ◽  
Author(s):  
Zhi Wei Guo ◽  
Ying Ying Gu ◽  
Shi Lin Zhou ◽  
Chen Hong Ren

Phthalocyanine catalysts were synthesized and supported matel phthalocyanines were found to be good catalysts for benzene hydroxylation to phenol. Matel phthalocyanines were characterized by N2 absorption-desorption, FT-IR spectroscopy, and tranmsission electron microscopy. The experimental results suggested that the supported matel phthalocyanines were good catalysts for benzene hydoxylation reaction. Supported vanadium phthalocyanine performed the best catalytic activity, on which 11.6% of phenol yield and 100% of selectivity were obtained. And it was proved to be reusable in this reaction.


Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 131 ◽  
Author(s):  
Yongjun Liu ◽  
Nan Cui ◽  
Penglong Jia ◽  
Wei Huang

An exclusive trace of CH4 direct carboxylation with CO2 by a stepwise technology was investigated using in-situ FT-IR spectroscopy. The results showed that CH4 was dissociated to atomic hydrogen and M-CHx species on catalyst surface when it was first introduced in the system, then CO2 was inserted into the intermediate to direct carboxylate. Finally, the subsequent adsorption of CH4 provided active hydrogen for the species of previous surface reaction, thus leading to the formation of the product. It was also found that the first introduction of CO2 on the surface of the “clean” catalyst might likely react with surface H species, which had an irreversible effect on the catalytic activity of CH4.


Author(s):  
Maciej Strzempek ◽  
Karolina A. Tarach ◽  
Kinga Góra-Marek ◽  
Fernando Rey ◽  
Miguel Palomino ◽  
...  

Abstract In this article the results of the statistical MC modelling corroborated by the FT-IR spectroscopy and gravimetric adsorption studies of the low aliphatic hydrocarbons in ZSM-5 (Si/Al =28 or...


2021 ◽  
Vol 22 (4) ◽  
pp. 2191
Author(s):  
Jing Huang ◽  
Nairveen Ali ◽  
Elsie Quansah ◽  
Shuxia Guo ◽  
Michel Noutsias ◽  
...  

In recent decades, vibrational spectroscopic methods such as Raman and FT-IR spectroscopy are widely applied to investigate plasma and serum samples. These methods are combined with drop coating deposition techniques to pre-concentrate the biomolecules in the dried droplet to improve the detected vibrational signal. However, most often encountered challenge is the inhomogeneous redistribution of biomolecules due to the coffee-ring effect. In this study, the variation in biomolecule distribution within the dried-sample droplet has been investigated using Raman and FT-IR spectroscopy and fluorescence lifetime imaging method. The plasma-sample from healthy donors were investigated to show the spectral differences between the inner and outer-ring region of the dried-sample droplet. Further, the preferred location of deposition of the most abundant protein albumin in the blood during the drying process of the plasma has been illustrated by using deuterated albumin. Subsequently, two patients with different cardiac-related diseases were investigated exemplarily to illustrate the variation in the pattern of plasma and serum biomolecule distribution during the drying process and its impact on patient-stratification. The study shows that a uniform sampling position of the droplet, both at the inner and the outer ring, is necessary for thorough clinical characterization of the patient’s plasma and serum sample using vibrational spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document