JAK/STAT3 Pathway in Human Intestinal Epithelial Cells During Trefoil Factor 3(TFF3) Mediated Cell Migration

2020 ◽  
Vol 17 (8) ◽  
pp. 993-1000
Author(s):  
Mengmeng Zhuang ◽  
Juan Le ◽  
Bo Zhu ◽  
Wenwen Zhang ◽  
Hao Yan ◽  
...  

Objective: Trefoil factor family is expressed in several tissues of the body and provides gastric and intestinal protection and healing. This research aims to indicate the mechanism involved in its function. Methods: The intestinal epithelial cells were pretreated with JAK inhibitor AG490 or the concentration of 60ug/ml human recombinant trefoil factor, while the levels of phospho-STAT3, E-cadherin and N-cadherin were detected by Western Blotting. The levels of Matrix Metalloproteinases, Ecadherin and N-cadherin were evaluated by quantitative real time PCR. The cell migration was assessed by the transwell assay and the scratch assay. The immunofluorescence method was performed to detect the reduction of molecular E-cadherin. Results: hTFF3 activates the JAK/STAT3 pathway in HT-29 cells. The effect of JAK/STAT3 pathway mechanism on cell migration promoted by hTFF3. TFF3 promoting cell migration is associated with increased gene transcription of MMPs. hTFF3 alters E-cadherin expression. hTFF3 activates the expression of N-cadherin and down-regulates E-cadherin expression in HT-29 Cells. Conclusion: We have shown that TFF3 activated the JAK/STAT3 pathway. TFF3 increased the level of Matrix Metalloproteinases and N-cadherin, decreased that of E-cadherin, while AG490 had the opposite effect. TFF3 accelerated cell migration and the AG490 relieved the migrating rate to control the levels. TFF3 activated JAK/STAT3 pathway which was associated with intestinal epithelial cell migration.

Toxins ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 232 ◽  
Author(s):  
Soshi Seike ◽  
Masaya Takehara ◽  
Keiko Kobayashi ◽  
Masahiro Nagahama

Clostridium perfringens strains B and C cause fatal intestinal diseases in animals. The secreted pore-forming toxin delta-toxin is one of the virulence factors of the strains, but the mechanism of intestinal pathogenesis is unclear. Here, we investigated the effects of delta-toxin on the mouse ileal loop. Delta-toxin caused fluid accumulation and intestinal permeability to fluorescein isothiocyanate (FITC)-dextran in the mouse ileal loop in a dose- and time-dependent manner. Treatment with delta-toxin induced significant histological damage and shortening of villi. Delta-toxin activates a disintegrin and metalloprotease (ADAM) 10, leading to the cleavage of E-cadherin, the epithelial adherens junction protein, in human intestinal epithelial Caco-2 cells. In this study, E-cadherin immunostaining in mouse intestinal epithelial cells was almost undetectable 1 h after toxin treatment. ADAM10 inhibitor (GI254023X) blocked the toxin-induced fluid accumulation and E-cadherin loss in the mouse ileal loop. Delta-toxin stimulated the shedding of intestinal epithelial cells. The shedding cells showed the accumulation of E-cadherin in intracellular vesicles and the increased expression of active caspase-3. Our findings demonstrate that delta-toxin causes intestinal epithelial cell damage through the loss of E-cadherin cleaved by ADAM10.


Sign in / Sign up

Export Citation Format

Share Document