Effects of N224 glycosylation in Saccharomycopsis fibuligera R64 α-amylase on enzyme activity and stability

2021 ◽  
Vol 17 ◽  
Author(s):  
Yovin Sugijo ◽  
Tina Dewi Rosahdi ◽  
Fernita Puspasari ◽  
Wangsa Tirta Ismaya ◽  
Khomaini Hasan ◽  
...  

Background: The amino acid sequence of an α-amylase of the yeast Saccharomycopsis fibuligera R64 (SfamyR64) contains the two putative N-linked glycosylation sites N153 and N224. N224 is hypothetically responsible for the binding of starch substrate because it is highly conserved among SfamyR64 homologs. Objective: To test whether N224 plays a key role in enzyme activity and stability. Methods: N224Q substitution was introduced by site-directed mutagenesis. The wild type and the mutant were independently over-produced in Pichia pastoris KM71. Activity of the wild type and of the mutant were compared, and their thermal-stability was assessed using heat treatments. The evolutionary relationship of SfamyR64 with its structural homologs with different glycosylation patterns was examined. Results: Activity of the N224Q mutant was approximately 80% lower than that of the wild type. The mutant showed no activity after 10 min of pre-incubation at 50 °C, whereas the wild type SfamyR64 showed activity until 30 min of treatment. Sfamy appeared to have evolved earlier than its structural homolog. Conclusion: SfamyR64 N224 is crucial for enzyme activity and thermal stability. This glycosylation site is unique for fungal and bacterial α-amylases.

1993 ◽  
Vol 294 (3) ◽  
pp. 879-884 ◽  
Author(s):  
K O ◽  
J S Hill ◽  
X Wang ◽  
R McLeod ◽  
P H Pritchard

Lecithin:cholesterol acyltransferase (LCAT; phosphatidylcholine-sterol acyltransferase, EC 2.3.1.43) is a glycoprotein which is responsible for the formation of cholesteryl ester in plasma. The carbohydrate content has been estimated to be approx. 25% of the total LCAT mass, and four potential N-linked glycosylation sites have been predicted at residues 20, 84, 272 and 384 of the LCAT protein sequence. In the present study, we have examined which of these sites are utilized and how the N-glycosylation affects the secretion and function of the enzyme. Site-directed mutagenesis was performed to eliminate the glycosylation consensus sequence at each of the four potential sites, and the mutant proteins were expressed in COS cells. The amount of each mutant LCAT secreted was similar to that of the wild-type enzyme but the molecular mass was decreased by 3-4 kDa. The specific activity of each mutant LCAT was significantly different from the wild-type; however, the magnitude and direction of the change depended on the glycosylation site mutagenized. Loss of carbohydrate at position 20, 84 or 272 resulted in a decrease in the specific activity of the mutant enzymes by 18%, 82%, and 62% respectively. In contrast, the mutant protein without glycosylation at position 384 displayed a 2-fold increase in enzyme activity. In addition, a quadruple mutant was constructed such that all four potential glycosylation sites were eliminated. The amount of the unglycosylated LCAT secreted into the culture medium was less than 10% of the wild-type level and the specific activity of this enzyme was decreased to 5% of that of the wild type. The results demonstrate that all four potential N-glycosylation sites in LCAT are used and the presence of carbohydrate at each site has diverse effects on the enzyme activity.


1995 ◽  
Vol 312 (1) ◽  
pp. 273-280 ◽  
Author(s):  
M Haraguchi ◽  
S Yamashiro ◽  
K Furukawa ◽  
K Takamiya ◽  
H Shiku ◽  
...  

The amino acid sequence deduced from the cloned human cDNA of beta-1,4-N-acetylgalactosaminyltransferase (GalNAc-T; EC 2.4.1.92) gene predicted three potential sites for N-linked glycosylation. Although many glycosyltransferases isolated contain from 2 to 6 N-glycosylation sites, their significance has not been adequately demonstrated. To clarify the roles of N-glycosylation in GalNAc-T function, we generated a series of mutant cDNAs, in which some or all of the glycosylation recognition sites were eliminated by polymerase chain reaction (PCR)-mediated site-directed mutagenesis. Using transcription/translation in vitro, we confirmed that all potential N-glycosylation sites could be used. Although cell lines transfected with mutant cDNAs showed equivalent levels of GalNAc beta 1-->4(NeuAc alpha 2-->3)Gal beta 1-->4Glc-Cer (GM2) to that of the wild-type, the extracts from mutant cDNA transfectants demonstrated lower enzyme activity than in the wild-type. The decrease in enzyme activity was more evident as the number of deglycosylated sites increased, with about 90% decrease in a totally deglycosylated mutant. The enzyme kinetics analysis revealed no significant change of Km among wild-type and mutant cDNA products. The intracellular localization of GalNAc-T expressed in transfectants with wild-type or mutant cDNAs also showed a similar perinuclear pattern (Golgi pattern). These results suggest that N-linked carbohydrates on GalNAc-T are required for regulating the stability of the enzyme structure.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Imen Lahmar ◽  
Hanen El Abed ◽  
Bassem Khemakhem ◽  
Hafedh Belghith ◽  
Ferjani Ben Abdallah ◽  
...  

A continuous research is attempted to fulfil the highest industrial demands of natural amylases presenting special properties. Newα-amylases extracted from stems and leaves ofPergularia tomentosa, which is widespread and growing spontaneously in Tunisia, were studied by the means of their activities optimization and purification. Some similarities were recorded for the two identified enzymes: (i) the highest amylase activity showed a promoted thermal stability at 50°C; (ii) the starch substrate at 1% enhanced the enzyme activity; (iii) the twoα-amylases seem to be calcium-independent; (iv) Zn2+, Cu2+, and Ag2+were considered as important inhibitors of the enzyme activity. Following the increased gradient of elution on Mono Q-Sepharose column, an increase in the specific activity of 11.82-fold and 10.92-fold was recorded, respectively, for leaves and stems with the presence of different peaks on the purification profiles.Pergulariaamylases activities were stable and compatible with the tested commercial detergents. The combination of plant amylase and detergent allowed us to enhance the wash performance with an increase of 35.24 and 42.56%, respectively, for stems and leaves amylases. Characterized amylases were reported to have a promoted potential for their implication notably in detergent industry as well as biotechnological sector.


2006 ◽  
Vol 290 (5) ◽  
pp. F1094-F1102 ◽  
Author(s):  
Anahí Paredes ◽  
Consuelo Plata ◽  
Manuel Rivera ◽  
Erika Moreno ◽  
Norma Vázquez ◽  
...  

The renal-specific Na+-K+-2Cl− cotransporter NKCC2 belongs to the SLC12 gene family; it is the target for loop diuretics and the cause of type I Bartter's syndrome. Because the NKCC2 sequence contains two putative N-linked glycosylation sites, one of which is conserved with the renal Na+-Cl− cotransporter in which glycosylation affects thiazide affinity, we assessed the role of glycosylation on NKCC2 functional properties. One (N442Q or N452Q) or both (N442,452Q) N-glycosylation sites were eliminated by site-directed mutagenesis. Wild-type NKCC2 and mutant clones were expressed in Xenopus laevis oocytes and analyzed by 86Rb+ influx, Western blotting, and confocal microscopy. Inhibition of glycosylation with tunicamycin in wild-type NKCC2-injected oocytes resulted in an 80% reduction of NKCC2 activity. Immunoblot of injected oocytes revealed that glycosylation of NKCC2 was completely prevented in N442,452Q-injected oocytes. Functional activity was reduced by 50% in N442Q- and N452Q-injected oocytes and by 80% in oocytes injected with N442,452Q, whereas confocal microscopy of oocytes injected with wild-type or mutant enhanced green fluorescent protein-tagged NKCC2 clones revealed that surface fluorescence intensity was reduced ∼20% in single mutants and 50% in the double mutant. Ion transport kinetic analyses revealed no changes in cation affinity and a small increase in Cl− affinity by N442Q and N442,452Q. However, a slight decrease in bumetanide affinity was observed. Our data demonstrate that NKCC2 is glycosylated and suggest that prevention of glycosylation reduces its functional expression by affecting insertion into the plasma membrane and the intrinsic activity of the cotransporter.


2003 ◽  
Vol 285 (4) ◽  
pp. C968-C976 ◽  
Author(s):  
O. Vagin ◽  
S. Denevich ◽  
G. Sachs

The factors determining trafficking of the gastric H,K-ATPase to the apical membrane remain elusive. To identify such determinants in the gastric H,K-ATPase, fusion proteins of yellow fluorescent protein (YFP) and the gastric H,K-ATPase β-subunit (YFP-β) and cyan fluorescent protein (CFP) and the gastric H,K-ATPase α-subunit (CFP-α) were expressed in HEK-293 cells. Then plasma membrane delivery of wild-type CFP-α, wild-type YFP-β, and YFP-β mutants lacking one or two of the seven β-subunit glycosylation sites was determined using confocal microscopy and surface biotinylation. Expression of the wild-type YFP-β resulted in the plasma membrane localization of the protein, whereas the expressed CFP-α was retained intracellularly. When coexpressed, both CFP-α and YFP-β were delivered to the plasma membrane. Removing each of the seven glycosylation sites, except the second one, from the extracellular loop of YFP-β prevented plasma membrane delivery of the protein. Only the mutant lacking the second glycosylation site (Asn103Gln) was localized both intracellularly and on the plasma membrane. A double mutant lacking the first (Asn99Gln) and the second (Asn103Gln) glycosylation sites displayed intracellular accumulation of the protein. Therefore, six of the seven glycosylation sites in the β-subunit are essential for the plasma membrane delivery of the β-subunit of the gastric H,K-ATPase, whereas the second glycosylation site (Asn103), which is not conserved among the β-subunits from different species, is not critical for plasma delivery of the protein.


1992 ◽  
Vol 282 (2) ◽  
pp. 361-367 ◽  
Author(s):  
C Bourguignon-Bellefroid ◽  
J M Wilkin ◽  
B Joris ◽  
R T Aplin ◽  
C Houssier ◽  
...  

Modification of the Streptomyces R61 DD-peptidase by N-bromosuccinimide resulted in a rapid loss of enzyme activity. In consequence, the role of the enzyme's two tryptophan residues was investigated by site-directed mutagenesis. Trp271 was replaced by Leu. The modification yielded a stable enzyme whose structural and catalytic properties were similar to those of the wild-type protein. Thus the Trp271 residue, though almost invariant among the beta-lactamases of classes A and C and the low-Mr penicillin-binding proteins, did not appear to be essential for enzyme activity. Mutations of the Trp233 into Leu and Ser strongly decreased the enzymic activity, the affinity for beta-lactams and the protein stability. Surprisingly, the benzylpenicilloyl-(W233L)enzyme deacylated at least 300-fold more quickly than the corresponding acyl-enzyme formed with the wild-type protein and gave rise to benzylpenicilloate instead of phenylacetylglycine. This mutant DD-peptidase thus behaved as a weak beta-lactamase.


1997 ◽  
Vol 326 (1) ◽  
pp. 243-247 ◽  
Author(s):  
Gilles MILLAT ◽  
Roseline FROISSART ◽  
Irène MAIRE ◽  
Dominique BOZON

Iduronate sulphatase (IDS) is responsible for mucopolysaccharidosis type II, a rare recessive X-linked lysosomal storage disease. The aim of this work was to evaluate the functional importance of each N-glycosylation site, and of the cysteine-84 residue. IDS mutant cDNAs, lacking one of the eight potential N-glycosylation sites, were expressed in COS cells. Although each of the potential sites was used, none of the eight glycosylation sites appeared to be essential for lysosomal targeting. Another important sulphatase co- or post-translational modification for generating catalytic activity involves the conversion of a cysteine residue surrounded by a conserved sequence C-X-P-S-R into a 2-amino-3-oxopropionic acid residue [Schmidt, Selmer, Ingendoh and von Figura (1995) Cell 82, 271–278]. This conserved cysteine, located at amino acid position 84 in IDS, was replaced either by an alanine (C84A) or by a threonine (C84T) using site-directed mutagenesis. C84A and C84T mutant cDNAs were expressed either in COS cells or in human lymphoblastoid cells deleted for the IDS gene. C84A had a drastic effect both for IDS processing and for catalytic activity. The C84T mutation produced a small amount of mature forms but also abolished enzyme activity, confirming that the cysteine residue at position 84 is required for IDS activity.


1999 ◽  
Vol 339 (2) ◽  
pp. 397-405 ◽  
Author(s):  
Benoit DESLAURIERS ◽  
Cecilia PONCE ◽  
Colette LOMBARD ◽  
Renée LARGUIER ◽  
Jean-Claude BONNAFOUS ◽  
...  

The purpose of this work was to investigate the role of N-glycosylation in the expression and pharmacological properties of the the rat AT1a angiotensin II (AII) receptor. Glycosylation-site suppression was carried out by site-directed mutagenesis (Asn → Gln) of Asn176 and Asn188 (located on the second extracellular loop) and by the removal of Asn4 at the N-terminal end combined with the replacement of the first four amino acids by a 10 amino acid peptide epitope (c-Myc). We generated seven possible N-glycosylation-site-defective mutants, all tagged at their C-terminal ends with the c-Myc epitope. This double-tagging strategy, associated with photoaffinity labelling, allowed evaluation of the molecular masses and immunocytochemical cellular localization of the various receptors transiently expressed in COS-7 cells. We showed that: (i) each of the three N-glycosylation sites are utilized in COS-7 cells; (ii) the mutant with three defective N-glycosylation sites was not (or was very inefficiently) expressed at the plasma membrane and accumulated inside the cell at the perinuclear zone; (iii) the preservation of two sites allowed normal receptor delivery to the plasma membrane, the presence of only Asn176 ensuring a behaviour similar to that of the wild-type receptor; and (iv) all expressed receptors displayed unchanged pharmacological properties (Kd for 125I-sarcosine1-AII; sarcosine1-AII-induced inositol phosphate production). These results demonstrate that N-glycosylation is required for the AT1 receptor expression. They are discussed in the light of current knowledge of membrane-protein maturation and future prospects of receptor overexpression for structural studies.


2019 ◽  
Vol 218 (8) ◽  
pp. 2782-2796 ◽  
Author(s):  
Natalia A. Cherepanova ◽  
Sergey V. Venev ◽  
John D. Leszyk ◽  
Scott A. Shaffer ◽  
Reid Gilmore

Human cells express two oligosaccharyltransferase complexes (STT3A and STT3B) with partially overlapping functions. The STT3A complex interacts directly with the protein translocation channel to mediate cotranslational glycosylation, while the STT3B complex can catalyze posttranslocational glycosylation. We used a quantitative glycoproteomics procedure to compare glycosylation of roughly 1,000 acceptor sites in wild type and mutant cells. Analysis of site occupancy data disclosed several new classes of STT3A-dependent acceptor sites including those with suboptimal flanking sequences and sites located within cysteine-rich protein domains. Acceptor sites located in short loops of multi-spanning membrane proteins represent a new class of STT3B-dependent site. Remarkably, the lumenal ER chaperone GRP94 was hyperglycosylated in STT3A-deficient cells, bearing glycans on five silent sites in addition to the normal glycosylation site. GRP94 was also hyperglycosylated in wild-type cells treated with ER stress inducers including thapsigargin, dithiothreitol, and NGI-1.


2020 ◽  
Vol 17 (1) ◽  
pp. 30-39
Author(s):  
Farzane Kargar ◽  
Mojtaba Mortazavi ◽  
Masoud Torkzadeh-Mahani ◽  
Safa Lotfi ◽  
Shahryar Shakeri

Background: The firefly luciferase enzyme is widely used in protein engineering and diverse areas of biotechnology, but the main problem with this enzyme is low-temperature stability. Previous reports indicated that surface areas of thermostable proteins are rich in arginine, which increased their thermal stability. In this study, this aspect of thermophilic proteins evaluated by mutations of surface residues to Arg. Here, we report the construction, purification, and studying of these mutated luciferases. Methods: For mutagenesis, the QuikChange site-directed mutagenesis was used and the I108R, T156R, and N177R mutant luciferases were created. In the following, the expression and purification of wild-type and mutant luciferases were conducted and their kinetic and structural properties were analyzed. To analyze the role of these Arg in these loops, the 3D models of these mutants’ enzymes were constructed in the I-TASSER server and the exact situation of these mutants was studied by the SPDBV and PyMOL software. Results: Overall, the optimum temperature of these mutated enzymes was not changed. However, after 30 min incubation of these mutated enzymes at 30°C, the I108R, T156R, N177R, and wild-type kept the 80%, 50%, 20%, and 20% of their original activity, respectively. It should be noted that substitution of these residues by Arg preserved the specific activity of firefly luciferase. Conclusion: Based on these results, it can be concluded that T156R and N177R mutants by compacting local protein structure, increased the thermostability of luciferase. However, insertion of positively charged residues in these positions create the new hydrogen bonds that associated with a series of structural changes and confirmed by intrinsic and extrinsic fluorescence spectroscopy and homology modeling studies.


Sign in / Sign up

Export Citation Format

Share Document