Synthesis, Antibacterial Activity and Molecular Docking of Phospholidinones in Stigmastane Series

2019 ◽  
Vol 15 (3) ◽  
pp. 259-264 ◽  
Author(s):  
Azhar U. Khan ◽  
Mahboob Alam ◽  
Soonheum Park ◽  
Poonam Dwivedi ◽  
Sunil K. Sharma ◽  
...  

<P>Introduction: Steroid compounds are widely distributed in nature throughout scientific history. Living organisms such as animals and vegetables have steroids that show a significant effect on their vital activities. Sterols are key components of all eukaryotic cell membranes. Methods: Steroidal compounds; 3β-oxo-[1’,3’,2’-oxathiaphos-phalidine-2’-one] stigmast-5-ene and 3β- oxo[1`,3`,2`-dioxaphosphalidine-2`-one]-stigmast-5-ene were successfully prepared using easily accessible 3β-hydroxy stigmast-5-ene with phosphorous oxychloride (POCl3), 2- mercaptoethanol/ethylene glycol and triethylamine (Et3N) in dry diethyl ether. Products were obtained in semi-solid state and characterized using physicochemical techniques. Results: The results of the bioassay showed that the synthesized compound containing the sulfur atom had antibacterial activity. Molecular docking was also done in order to show in silico antibacterial activity and to make out the probable binding mode of compound with the amino acid residues of protein. Conclusion: The results of the docking study showed that synthesized compound 2 had minimal binding energy with substantial affinity for the active site.</P>

2020 ◽  
Vol 16 (7) ◽  
pp. 892-902 ◽  
Author(s):  
Aida Iraji ◽  
Mahsima Khoshneviszadeh ◽  
Pegah Bakhshizadeh ◽  
Najmeh Edraki ◽  
Mehdi Khoshneviszadeh

Background: Melanogenesis is a process of melanin synthesis, which is a primary response for the pigmentation of human skin. Tyrosinase is a key enzyme, which catalyzes a ratelimiting step of the melanin formation. Natural products have shown potent inhibitors, but some of these possess toxicity. Numerous synthetic inhibitors have been developed in recent years may lead to the potent anti– tyrosinase agents. Objective: A number of 4-hydroxy-N'-methylenebenzohydrazide analogues with related structure to chalcone and tyrosine were constructed with various substituents at the benzyl ring of the molecule and evaluate as a tyrosinase inhibitor. In addition, computational analysis and metal chelating potential have been evaluated. Methods: Design and synthesized compounds were evaluated for activity against mushroom tyrosinase. The metal chelating capacity of the potent compound was examined using the mole ratio method. Molecular docking of the synthesized compounds was carried out into the tyrosine active site. Results: Novel 4-hydroxy-N'-methylenebenzohydrazide derivatives were synthesized. The two compounds 4c and 4g showed an IC50 near the positive control, led to a drastic inhibition of tyrosinase. Confirming in vitro results were performed via the molecular docking analysis demonstrating hydrogen bound interactions of potent compounds with histatidine-Cu+2 residues with in the active site. Kinetic study of compound 4g showed competitive inhibition towards tyrosinase. Metal chelating assay indicates the mole fraction of 1:2 stoichiometry of the 4g-Cu2+ complex. Conclusion: The findings in the present study demonstrate that 4-Hydroxy-N'- methylenebenzohydrazide scaffold could be regarded as a bioactive core inhibitor of tyrosinase and can be used as an inspiration for further studies in this area.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2288
Author(s):  
Ahmed Gaber ◽  
Moamen S. Refat ◽  
Arafa A.M. Belal ◽  
Ibrahim M. El-Deen ◽  
Nader Hassan ◽  
...  

Herein, we report the synthesis of eight new mononuclear and binuclear Co2+, Ni2+, Cu2+, and Zn2+ methoxy thiosemicarbazone (MTSC) complexes aiming at obtaining thiosemicarbazone complex with potent biological activity. The structure of the MTSC ligand and its metal complexes was fully characterized by elemental analysis, spectroscopic techniques (NMR, FTIR, UV-Vis), molar conductivity, thermogravimetric analysis (TG), and thermal differential analysis (DrTGA). The spectral and analytical data revealed that the obtained thiosemicarbazone-metal complexes have octahedral geometry around the metal center, except for the Zn2+-thiosemicarbazone complexes, which showed a tetrahedral geometry. The antibacterial and antifungal activities of the MTSC ligand and its (Co2+, Ni2+, Cu2+, and Zn2+) metal complexes were also investigated. Interestingly, the antibacterial activity of MTSC- metal complexes against examined bacteria was higher than that of the MTSC alone, which indicates that metal complexation improved the antibacterial activity of the parent ligand. Among different metal complexes, the MTSC- mono- and binuclear Cu2+ complexes showed significant antibacterial activity against Bacillus subtilis and Proteus vulgaris, better than that of the standard gentamycin drug. The in silico molecular docking study has revealed that the MTSC ligand could be a potential inhibitor for the oxidoreductase protein.


2021 ◽  
Vol 25 (3) ◽  
pp. 271-282
Author(s):  
Didik Priyandoko ◽  
◽  
Wahyu Widowati ◽  
Mawar Subangkit ◽  
Diana Jasaputra ◽  
...  

The 2019 novel coronavirus (2019-nCoV) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly from its origin in Wuhan City, Hubei Province, China, to the rest of the world. The efficacy of herbal treatment in the control of contagious disease was demonstrated during the 2003 outbreak of severe acute respiratory syndrome (SARS). Natural compound used for this study were isoflavone and myricetin. Molecular docking was performed to analyze binding mode of the compounds towards 12 proteins related to COVID-19. The prediction shows that isoflavone and myricetin have moderate probability of antiviral activity. All of the docked compounds occupied the active sites of the proteins related to COVID-19. Based on QSAR and molecular docking, interactions were predicted with 10 out of 12 potential COVID-19 proteins for myricetin and with 9 out of 12 proteins interactions for isoflavone. A potential disease alleviating action is suggested for isoflavone and myricetin in the context of COVID-19 infection.


Author(s):  
Vivek B. Panchabhai ◽  
Santosh R. Butle ◽  
Parag G. Ingole

We report a novel scaffold of N-substituted 2-phenylpyrido(2,3-d)pyrimidine derivatives with potent antibacterial activity by targeting this biotin carboxylase enzyme. The series of eighteen N-substituted 2-phenylpyrido(2,3-d)pyrimidine derivatives were synthesized, characterized and further molecular docking studied to determine the mode of binding and energy changes with the crystal structure of biotin carboxylase (PDB ID: 2V58) was employed as the receptor with compounds 6a-r as ligands. The results obtained from the simulation were obtained in the form of dock score; these values represent the minimum energies. Compounds 6d, 6l, 6n, 6o, 6r and 6i showed formation of hydrogen bonds with the active site residues and van Der Walls interactions with the biotin carboxylase enzyme in their molecular docking studies. This compound can be studied further and developed into a potential antibacterial lead molecule.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2291 ◽  
Author(s):  
David Malinak ◽  
Eugenie Nepovimova ◽  
Daniel Jun ◽  
Kamil Musilek ◽  
Kamil Kuca

The acetylcholinesterase (AChE) reactivators (e.g., obidoxime, asoxime) became an essential part of organophosphorus (OP) poisoning treatment, together with atropine and diazepam. They are referred to as a causal treatment of OP poisoning, because they are able to split the OP moiety from AChE active site and thus renew its function. In this approach, fifteen novel AChE reactivators were determined. Their molecular design originated from former K-oxime compounds K048 and K074 with remaining oxime part of the molecule and modified part with heteroarenium moiety. The novel compounds were prepared, evaluated in vitro on human AChE (HssAChE) inhibited by tabun, paraoxon, methylparaoxon or DFP and compared to commercial HssAChE reactivators (pralidoxime, methoxime, trimedoxime, obidoxime, asoxime) or previously prepared compounds (K048, K074, K075, K203). Some of presented oxime reactivators showed promising ability to reactivate HssAChE comparable or higher than the used standards. The molecular modelling study was performed with one compound that presented the ability to reactivate GA-inhibited HssAChE. The SAR features concerning the heteroarenium part of the reactivator’s molecule are described.


Author(s):  
Salim Bouchentouf ◽  
Noureddine Missoum

<p>The spread of the global COVID-19 pandemic, the lack of specific treatment and the urgent situation requires use of all resources to remedy this scourge. In the present study, using molecular docking, we identify new probable inhibitors of COVID-19 by molecules from <i>Nigella sativa L</i>, which is highly reputed healing herb in North African societies and both Islamic and Christian traditions. The discovery of the M<sup>pro</sup> protease structure in COVID-19 provides a great opportunity to identify potential drug candidates for treatment. Focusing on the main proteases in CoVs (3CL<sup>pro</sup>/M<sup>pro</sup>) (PDB ID 6LU7 and 2GTB); docking of compounds from <i>Nigella Sativa</i> and drugs under clinical test was performed using Molecular Operating Environment software (MOE). Nigelledine docked into 6LU7 active site gives energy complex about -6.29734373 Kcal/mol which is close to the energy score given by chloroquine (-6.2930522 Kcal/mol) and better than energy score given by hydroxychloroquine (-5.57386112 Kcal/mol) and favipiravir (-4.23310471 kcal/mol). Docking into 2GTB active site showed that α- Hederin gives energy score about-6.50204802 kcal/mol whcih is better energy score given by chloroquine (-6.20844936 kcal/mol), hydroxychloroquine (-5.51465893 kcal/mol)) and favipiravir (-4.12183571kcal/mol). Nigellidine and α- Hederin appeared to have the best potential to act as COVID-19 treatment. Further, researches are necessary to testify medicinal use of identified and to encourage preventive use of <i>Nigella Sativa </i>against coronavirus infection.</p>


Author(s):  
Priyanka Chandra ◽  
Swastika Ganguly ◽  
Rajdeep Dey ◽  
Biswatrish Sarkar

Introduction: In the present study a novel series of twelve 1-(aryl)-2-(1H-imidazol-1-yl)methanones 3(a-l) were synthesized and characterised by physicochemical and spectral analysis,viz. elemental analysis, IR spectroscopy, NMR spectroscopy. The antibacterial property of the compounds were examined, in order to develop new broad spectrum antibiotics. Methods: The compounds 3(a-l) were synthesised by reacting the corresponding 2-(aryl)-1H-imidazoles 2 with substituted benzoyl chlorides. Binding mode analysis of the most active compound was carried out. Predictive ADME studies were carried out for all the compounds. Results and Discussions: Among the synthesized compounds, (2-(3-nitrophenyl) (2,4-dichlorophenyl) -1Himidazol-1-yl)methanone 3i exhibited highest antibacterial activity. Binding mode analysis of the highest active compound was carried out in the active site of glucosamine-6-phosphate synthase (2VF5).


2020 ◽  
Author(s):  
Anurag Agrawal ◽  
Nem Kumar Jain ◽  
Neeraj Kumar ◽  
Giriraj T Kulkarni

This study belongs to identification of suitable COVID-19 inhibitors<br><div><br></div><div>Coronavirus became pandemic very soon and is a potential threat to human lives across the globe. No approved drug is currently available therefore an urgent need has been developed for any antiviral therapy for COVID-19. For the molecular docking study, ten herbal molecules have been included in the current study. The three-dimensional chemical structures of molecules were prepared through ChemSketch 2015 freeware. Molecular docking study was performed using AutoDock 4.2 simulator and Discovery studio 4.5 was employed to predict the active site of target enzyme. Result indicated that all-natural molecules found in the active site of enzyme after molecular docking. Oxyacanthine and Hypericin (-10.990 and -9.05 and kcal/mol respectively) have shown good binding efficacy among others but Oxyacanthine was the only natural product which made some of necessary interactions with residues in the enzyme require for target inhibition. Therefore Oxyacanthine may be considered to be potential inhibitor of main protease enzyme of virus but need to be explored for further drug development process. <br></div>


2021 ◽  
Vol 18 (21) ◽  
pp. 39
Author(s):  
Mardi Santoso ◽  
Muhammad Riza Ghulam Fahmi ◽  
Yehezkiel Steven Kurniawan ◽  
Taslim Ersam ◽  
Sri Fatmawati ◽  
...  

This study examined the synthesis of isoniazid-isatin hydrazone derivatives 5-7, followed by an investigation on the in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv, and molecular docking. A yield of 81 - 92 % of these compounds was achieved, with structural characterization by spectroscopic methods (FTIR, NMR, HRMS). The in vitro antitubercular activity was evaluated against M. tuberculosis H37Rv, and the highest effect was observed in compound 7, with a minimum inhibitory concentration (MIC) of 0.017 mM, lower than rifampicin (MIC 0.048 mM), which served as the positive control. In addition, the molecular docking of 5-7 was performed to visualize the interaction of isoniazid-isatin hydrazone derivatives with the active site of InhA receptor, which was in agreement with the experimental data. The hydrogen bonding with Ser94 and pi-pi interaction with Phe41 and/or Phe97 on the InhA active site was pivotal for the antitubercular activity. HIGHLIGHTS Tuberculosis caused by Mycobacterium tuberculosis is one of the top ten leading causes of death globally The first and second lines of antituberculosis drugs are the prevalent treatment for this disease, but they show several drawbacks and are exacerbated by the occurrence of drug resistance The isoniazid-isatin hydrazone derivatives were designed through molecular hybridization and synthesized effectively and exhibited moderate to high activity against tuberculosis H37Rv Molecular docking study demonstrated that the hydrogen bonding with Ser94 and the pi-pi interaction with Phe41 and/or Phe97 are important for antitubercular activity GRAPHICAL ABSTRACT


Sign in / Sign up

Export Citation Format

Share Document