Exploring the Role of Water Molecules in the Ligand Binding Domain of PDE4B and PDE4D: Virtual Screening Based Molecular Docking of Some Active Scaffolds

2019 ◽  
Vol 15 (4) ◽  
pp. 334-366
Author(s):  
Priya Singh ◽  
Mitali Mishra ◽  
Shivangi Agarwal ◽  
Samaresh Sau ◽  
Arun K. Iyer ◽  
...  

Background: The phosphodiesterase (PDE) is a superfamily represented by four genes: PDE4A, B,C, and D which cause the hydrolysis of phosphodiester bond of cAMP to yield inactive AMP. c-AMP catalyzing enzyme is predominant in inflammatory and immunomodulatory cells. Therapy to treat Chronic Obstructive Pulmonary Disease (COPD) with the use of PDE4 inhibitors is highly envisaged. Objective: A molecular docking experiment with large dataset of diverse scaffolds has been performed on PDE4 inhibitors to analyze the role of amino acid responsible for binding and activation of the secondary transmitters. Apart from the general docking experiment, the main focus was to discover the role of water molecules present in the ligand-binding domain. Methods: All the compounds were docked in the PDE4B and PDE4D active cavity to produce the free binding energy scores and spatial disposition/orientation of chemical groups of inhibitors around the cavity. Under uniform condition, the experiments were carried out with and without water molecules in the LBD. The exhaustive study was carried out on the Autodock 4.2 software and explored the role of water molecules present in the binding domain. Results: In presence of water molecule, Roflumilast has more binding affinity (-8.48 Kcal/mol with PDE4B enzyme and -8.91 Kcal/mol with PDE4D enzyme) and forms two hydrogen bonds with Gln443 and Glu369 and amino acid with PDE4B and PDE4D enzymes respectively. While in absence of water molecule its binding affinity has decreased (-7.3 Kcal/mol with PDE4B enzyme and -5.17 Kcal/mol with PDE4D enzyme) as well as no H-bond interactions were observed. Similar observation was made with clinically tested molecules. Conclusion: In protein-ligand binding interactions, appropriate selection of water molecules facilitated the ligand binding, which eventually enhances the efficiency as well as the efficacy of ligand binding.

Author(s):  
Hari Balaji ◽  
Selvaraj Ayyamperuma ◽  
Niladri Saha ◽  
Shyam Sundar Pottabathula ◽  
Jubie Selvaraj ◽  
...  

: Vitamin-D deficiency is a global concern. Gene mutations in the vitamin D receptor’s (VDR) ligand binding domain (LBD) variously alter the ligand binding affinity, heterodimerization with retinoid X receptor (RXR) and inhibit coactivator interactions. These LBD mutations may result in partial or total hormone unresponsiveness. A plethora of evidence report that selective long chain polyunsaturated fatty acids (PUFAs) including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and arachidonic acid (AA) bind to the ligand-binding domain of VDR and lead to transcriptional activation. We therefore hypothesize that selective PUFAs would modulate the dynamics and kinetics of VDRs, irrespective bioactive of vitamin-D binding. The spatial arrangements of the selected PUFAs in VDR active site were examined by in-silico docking studies. The docking results revealed that PUFAs have fatty acid structure-specific binding affinity towards VDR. The calculated EPA, DHA & AA binding energies (Cdocker energy) were lesser compared to vitamin-D in wild type of VDR (PDB id: 2ZLC). Of note, the DHA has higher binding interactions to the mutated VDR (PDB id: 3VT7) when compared to the standard Vitamin-D. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding of DHA with mutated VDR complex. These findings suggest the unique roles of PUFAs in VDR activation and may offer alternate strategy to circumvent vitamin-D deficiency.


Biochemistry ◽  
2005 ◽  
Vol 44 (48) ◽  
pp. 15787-15798 ◽  
Author(s):  
Kuo-Wei Hung ◽  
Thallapuranam Krishnaswamy S. Kumar ◽  
Karuppanan Muthusamy Kathir ◽  
Ping Xu ◽  
Feng Ni ◽  
...  

2014 ◽  
Vol 33 (12) ◽  
pp. 2753-2758 ◽  
Author(s):  
Margaret L. Eng ◽  
John E. Elliott ◽  
Stephanie P. Jones ◽  
Tony D. Williams ◽  
Ken G. Drouillard ◽  
...  

2002 ◽  
Vol 277 (40) ◽  
pp. 37464-37468 ◽  
Author(s):  
Thijs J. G. Ettema ◽  
Arie B. Brinkman ◽  
Travis H. Tani ◽  
John B. Rafferty ◽  
John van der Oost

Sign in / Sign up

Export Citation Format

Share Document