scholarly journals Identification of Bioactive Phytoconstituents from the Plant Euphorbia hirta as Potential Inhibitor of SARS-CoV-2: an In-Silico Approach

2021 ◽  
Vol 12 (2) ◽  
pp. 1385-1396

Currently, the entire globe is under the deadliest pandemic of Covid-19 caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). At present, no specific treatment is available to combat COVID-19 infection. Euphorbia hirta (Euphorbiaceae) have been reported for a variety of biological activities, including antiviral. The present investigation aimed to identify potential phytoconstituents of the plant E. hirta from the category flavonoids and coumarins against the SARS-CoV-2 using in silico approach. The molecular docking studies were performed using two different targets of SARS-CoV-2, namely Main protease (Mpro; PDB ID: 6M2N) and RNA-dependent RNA polymerase (RdRp; PDB ID: 7BW4). Based on the molecular docking study in comparison with standard drug, four compounds, namely Euphrobianin, Quercetin, 3-o-alpha-rhamnoside, Isoquercitrin, and rutin, were screened against the target Mpro. Three phytoconstituents, euphorbianin, myricetin, and rutin, were screened against the target RdRp. In the in silico toxicity studies of screened phytoconstituents, except myrectin all were predicted safe. Results of euphorbianin and rutin were found more interesting as both compounds had high binding affinity against both targets. Finally, we want to conclude that euphrobianin, quercetin 3-o-alpha-rhamnoside, isoquercitrin, and rutin could be further explored rapidly as they may have the potential to fight against COVID-19.

2021 ◽  
Vol 22 (6) ◽  
pp. 2977
Author(s):  
Ahmed Abdelaal Ahmed Mahmoud M. Alkhatip ◽  
Michail Georgakis ◽  
Lucio R. Montero Valenzuela ◽  
Mohamed Hamza ◽  
Ehab Farag ◽  
...  

SARS-CoV-2 currently lacks effective first-line drug treatment. We present promising data from in silico docking studies of new Methisazone compounds (modified with calcium, Ca; iron, Fe; magnesium, Mg; manganese, Mn; or zinc, Zn) designed to bind more strongly to key proteins involved in replication of SARS-CoV-2. In this in silico molecular docking study, we investigated the inhibiting role of Methisazone and the modified drugs against SARS-CoV-2 proteins: ribonucleic acid (RNA)-dependent RNA polymerase (RdRp), spike protein, papain-like protease (PlPr), and main protease (MPro). We found that the highest binding interactions were found with the spike protein (6VYB), with the highest overall binding being observed with Mn-bound Methisazone at −8.3 kcal/mol, followed by Zn and Ca at −8.0 kcal/mol, and Fe and Mg at −7.9 kcal/mol. We also found that the metal-modified Methisazone had higher affinity for PlPr and MPro. In addition, we identified multiple binding pockets that could be singly or multiply occupied on all proteins tested. The best binding energy was with Mn–Methisazone versus spike protein, and the largest cumulative increases in binding energies were found with PlPr. We suggest that further studies are warranted to identify whether these compounds may be effective for treatment and/or prophylaxis.


2020 ◽  
Vol 32 (6) ◽  
pp. 1482-1490
Author(s):  
Manju Mathew ◽  
Raja Chinnamanayakar ◽  
Ezhilarasi Muthuvel Ramanathan

A series of 1-(5-(5-(4-chlorophenyl)furan-2-yl)-4,5-dihyropyrazol-1-yl ethanone (5a-h) was synthesized through E-(3-(5-(4-chloro-phenyl)furan-2-yl)-1-phenylprop-2-en-1-one (3a-h) with hydrazine monohydrate and sodium acetate. Totally, eight compounds were synthesized and their structures were elucidated by infrared, 1H & 13C NMR, elemental analysis, antimicrobial studies, in silico molecular docking studies and also in silico ADME prediction. Antimicrobial studies of the synthesized compounds showed good to moderate activity against the all the stains compared with standard drugs. in silico Molecular docking study was carried out using bacterial protein and BC protein. Synthesized compounds (5a-h) showed good docking score compared with ciprofloxacin. Antimicrobial study was carried out for 4-chlorophenyl furfuran pyrazole derivatives (5a-h). The results of assessment of toxicities, drug likeness and drug score profiles of compounds (5a-j) are promising


2020 ◽  
Author(s):  
sabri ahmed cherrak ◽  
merzouk hafida ◽  
mokhtari soulimane nassima

A novel (COVID-19) responsible of acute respiratory infection closely related to SARS-CoV has recently emerged. So far there is no consensus for drug treatment to stop the spread of the virus. Discovery of a drug that would limit the virus expansion is one of the biggest challenges faced by the humanity in the last decades. In this perspective, testing existing drugs as inhibitors of the main COVID-19 protease is a good approach.Among natural phenolic compounds found in plants, fruit, and vegetables; flavonoids are the most abundant. Flavonoids, especially in their glycosylated forms, display a number of physiological activities, which makes them interesting to investigate as antiviral molecules.The flavonoids chemical structures were downloaded from PubChem and protease structure 6lu7 was from the Protein Data Bank site. Molecular docking study was performed using AutoDock Vina. Among the tested molecules Quercetin-3-O-rhamnoside showed the highest binding affinity (-9,7 kcal/mol). Docking studies showed that glycosylated flavonoids are good inhibitors for the covid-19 protease and could be further investigated by in vitro and in vivo experiments for further validation.


2020 ◽  
Vol 11 (1) ◽  
pp. 7981-7993

The infection of the global COVID-19 pandemic and the absence of any possible treatment options warrants the use of all available resources to find effective drugs against this scourge. Various ongoing researches have been searching for the new drug candidate against COVID-19 infection. The research objective is based on the molecular docking study of inhibition of the main protease of COVID-19 by natural compounds found in Allium sativum and Allium cepa. Lipinski rule of five and Autodock 4.2 was used by using the Lamarckian Genetic Algorithm to perform Molecular docking to analyze the probability of docking. Further, ADME analysis was also performed by using SwissADME, which is freely available on the web. In the present study, we identified S-Allylcysteine sulfoxide (Alliin), S-Propyl cysteine, S-Allylcysteine, S-Ethylcysteine, S-Allylmercaptocysteine, S-Methylcysteine, S-propyl L-cysteine with binding energies (-5.24, -4.49, -4.99, -4.91, -4.79, -4.76, -5.0 kcal/mol) as potential inhibitor candidates for COVID-19. Out of 7 selected compounds, alliin showed the best binding efficacy with target protein 6LU7. In silico ADME analysis revealed that these compounds are expected to have a standard drug-like property as well. Our findings propose that natural compounds from garlic and onion can be used as potent inhibitors against the main protease of COVID-19, which could be helpful in combating the COVID-19 pandemic.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5828
Author(s):  
Amalia Stefaniu ◽  
Lucia Pirvu ◽  
Bujor Albu ◽  
Lucia Pintilie

Several derivatives of benzoic acid and semisynthetic alkyl gallates were investigated by an in silico approach to evaluate their potential antiviral activity against SARS-CoV-2 main protease. Molecular docking studies were used to predict their binding affinity and interactions with amino acids residues from the active binding site of SARS-CoV-2 main protease, compared to boceprevir. Deep structural insights and quantum chemical reactivity analysis according to Koopmans’ theorem, as a result of density functional theory (DFT) computations, are reported. Additionally, drug-likeness assessment in terms of Lipinski’s and Weber’s rules for pharmaceutical candidates, is provided. The outcomes of docking and key molecular descriptors and properties were forward analyzed by the statistical approach of principal component analysis (PCA) to identify the degree of their correlation. The obtained results suggest two promising candidates for future drug development to fight against the coronavirus infection.


2021 ◽  
Vol 1 (1) ◽  
pp. 25-31
Author(s):  
Achal Mishra ◽  
Radhika Waghela

SARS-CoV-2, a new type of Coronavirus, has affected more millions of people worldwide. From the spread of this infection, many studies related to this virus and drug designing for the treatment have been started. Most of the studies target the SARS-CoV-2 main protease, spike protein of SASR-CoV-2, and some are targeting the human furin protease. In the current work, we chose the clinically used drug molecules remdesivir, favipiravir, lopinavir, hydroxychloroquine, and chloroquine onto the target protein SARS-CoV-2 main protease. Docking studies were performed using Arguslab, while Discovery Studio collected 2D and 3D pose views with the crystal structure of COVID-19 main protease in complex with an inhibitor N3 with PDB ID 6LU7. Computational studies reveal that all ligands provided good binding affinities towards the target protein. Among all the chosen drugs, lopinavir showed the highest docking score of -11.75 kcal/mol. The results from this molecular docking study encourage the use of lopinavir as the first-line treatment drug due to its highest binding affinity.


2018 ◽  
Vol 5 (1) ◽  
pp. 28-32
Author(s):  
Amuthavalli A ◽  
Prakash B ◽  
Velmurugan R

New hetero annulated indoles were synthesized and structurally characterized by spectral means. In order to understand the nature of interactions of these molecules, we carried out molecular docking studies using the protein kinase CK2 inhibitors. The docking results provided some useful information for the futuredesign of more potent inhibitors. The in vitro cytotoxicity was evaluated for all the new compounds by MTT assay against HeLa and compared with the standard drug ellipticine. All the compounds showed moderate to potent activity against the cell lines. The preliminary structure–activity relationships were carried out.


2019 ◽  
Vol 20 (15) ◽  
pp. 1587-1602 ◽  
Author(s):  
Harmeet Kaur ◽  
Sudhir Gahlawat ◽  
Jasbir Singh ◽  
Balasubramanian Narasimhan

Background: The diazenyl compounds (-N=N- linkage) have been reported to have antimicrobial activity. In modern drug discovery, the drug-receptor interactions are generally explored by the molecular docking studies. Materials and Methods: Three categories of diazenyl scaffolds were screened for the docking studies to explore the binding mechanism of interaction with various microbial targets. The diazenyl Schiff bases (SBN-20, SBN-21, SBN-25, SBN-33, SBN-39, SBN-40 and SBN-42), naphthol pharmacophore based diazenyl Schiff bases (NS-2, NS-8, NS-12, NS-15, NS-21, and NS-23), morpholine based diazenyl chalcones (MD-6, MD-9, MD-14, MD-16, MD-20, and MD-21) were docked against various bacterial and fungal proteins in comparison with different standard drugs. Further, the drug likeliness and ADME properties of these molecules were predicted by QikProp module of the Schrodinger software. Results: Most of the derivatives had shown less docking scores and binding energies towards bacterial proteins, such as dihydropteroate synthase (PDB:2VEG), glucosamine-6-phosphate synthase (PDB:2VF5), dihydrofolate reductase (PDB:3SRW) in comparison with the standard drugs. The naphthol based diazenyl Schiff bases NS-21 and NS-23 were predicted to act on the cytochrome P450 sterol 14-alpha-demethylase (CYP51) (PDB:5FSA) involved in sterol biosynthesis, an essential target for antifungal drugs. The derivative MD-6, NS-2, NS-21, and NS-23 had shown high docking scores against bacterial DNA topoisomerase (PDB:3TTZ) in comparison with the standard drug ciprofloxacin. Further, most of the synthesized derivatives had shown drug like characters. Conclusion: Hence, these compounds can be developed as novel antibacterial agents as potent DNA topoisomerase inhibitors and antifungal agents as CYP51 inhibitors.


Author(s):  
Samir M. Awad ◽  
Mosaad S. Mohamed ◽  
Marwa Abd El-Fattah Khodair ◽  
Rania H. Abd El-Hameed

Background: Benzo[h]chromenes attracted great attention because of their widespread biological activities including antiproliferate activity, and the discovery of novel effective anti-cancer agents is imperative. Objective: The main objectives to synthesize new benzo[h]chromene derivatives and some reported derivatives then testing all of them for their anti-cancer activities. Methods: The structures of the newly synthesized derivatives were confirmed by elemental and spectral analysis (IR, Mass, 1H-NMR and 13C-NMR). 35 compounds were selected by National Cancer Institute (NCI) for single dose testing against 60 cell lines and 3 active compounds were selected for 5-doses testing. Also, these 3 compounds were tested as EGFR-inhibitors; using sorafenib as standard, and Tubulin polymerization inhibitors using colchicines as standard drug; and molecular docking study for the most active derivative on these 2 enzymes was carried out. Results: Compounds 1a, 1c and 2b have the highest activities among all 35 tested compounds especially compound 1c. Conclusion: Compound 1c has promising anti-cancer activities compared to the used standards and may need further modification and investigations.


Author(s):  
Trina Ekawati Tallei ◽  
Sefren Geiner Tumilaar ◽  
Nurdjannah Jane Niode ◽  
Fatimawali Fatimawali ◽  
Billy Johnson Kepel ◽  
...  

Background: Since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic, researchers have been trying to investigate several active compounds found in plants that have the potential to inhibit the proliferation of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the cause of COVID-19. The search for plant-based antivirals against the SARS-CoV-2 is promising, as several plants have been shown to possess antiviral activities against betacoronaviruses (beta-CoVs) Objective: The present study aimed to evaluate bioactive compounds found in plants by using a molecular docking approach to inhibit Main Protease (Mpro) (PDB code: 6LU7) and Spike (S) Glycoprotein (PDB code: 6VXX) of SARS-CoV-2. Methods: Evaluation was performed on the docking scores calculated using AutoDock Vina as a docking engine. For each compound that was docked, a rule of five was calculated to determine whether a compound with certain pharmacological or biological activities might have chemical and physical properties that would make it an active drug orally in humans. Determination of the docking score was done by selecting the conformation of the ligand that has the lowest binding free energy (best pose). As a comparison, nelfinavir (an antiretroviral drug), chloroquine and hydroxychloroquine sulfate (anti-malarial drugs recommended by the FDA as emergency drugs) were used. Results: The results showed that hesperidine, cannabinoids, pectolinarin, epigallocatechin gallate, and rhoifolin had better poses than nelfinavir, chloroquine and hydroxychloroquine sulfate as spike glycoprotein inhibitors. Hesperidin, rhoifolin, pectolinarin, and cannabinoids had about the same pose as nelfinavir, but were better than chloroquine and hydroxychloroquine sulfate as Mpro inhibitors. These plant compounds have the potential to be developed as specific therapeutic agents against COVID-19. Conclusion: Several natural compounds of plants evaluated in this study showed better binding free energy compared to nelfinavir, chloroquine and hydroxychloroquine sulfate which so far are recommended in the treatment of COVID-19.


Sign in / Sign up

Export Citation Format

Share Document