Development and Validation of a Simple HPLC-UV Method to Assay DEET Repellents and its Application to Different Commercial Forms

2020 ◽  
Vol 16 ◽  
Author(s):  
Juliana dos Santosa ◽  
Rebeca Lino Lourenço ◽  
Priscila Rosa ◽  
Andréa Inês Horn Adams

Background: N’,N’-diethyl-m-toluamide (DEET) is the most widely used repellent substance worldwide. It is formulated as aerosol, solution, lotion, gel and patches. However, the official compendia report monographs to analyze only DEET drug substance and solution. Objective: In this study an isocratic HPLC method was validated to assay DEET in lotion, gel and solution, under the same analytical conditions. Method: The method was validated according to ICH requirements and DEET detection was achieved at around 11 min, using C-18 column, a mobile phase composed by methanol, acetonitrile and water pH 4.5 (45:10:45), flow rate at 1 mL min-1 and detection at 270 nm. Results: A linear relationship was observed in the range of 2.5 to 100 µg mL-1, the method was precise (relative standard deviation < 2%) and accuracy was demonstrated by DEET recovery values ranging from 99.5 to 100.2%. The specificity was studied by a forced degradation test, where degradation products were observed after alkaline degradation and ultraviolet radiation. Appropriate resolution between DEET, degradation products and excipient peaks indicated the method specificity. Robustness was evaluated by a full factorial design, and no effect on DEET assay was observed under simultaneous variation in analytical parameters. The method was applied to assay nine marketed formulations, demonstrating its good applicability. Conclusion: The validated HPLC method was successfully applied to the quantitative analysis of DEET in lotion, gel and solution, contributing to improve the quality control and the efficacy of these formulations.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Fahimeh Sadeghi ◽  
Latifeh Navidpour ◽  
Sima Bayat ◽  
Minoo Afshar

A green, simple, and stability-indicating RP-HPLC method was developed for the determination of diltiazem in topical preparations. The separation was based on a C18analytical column using a mobile phase consisted of ethanol: phosphoric acid solution (pH = 2.5) (35 : 65, v/v). Column temperature was set at 50°C and quantitation was achieved with UV detection at 240 nm. In forced degradation studies, the drug was subjected to oxidation, hydrolysis, photolysis, and heat. The method was validated for specificity, selectivity, linearity, precision, accuracy, and robustness. The applied procedure was found to be linear in diltiazem concentration range of 0.5–50 μg/mL (r2=0.9996). Precision was evaluated by replicate analysis in which % relative standard deviation (RSD) values for areas were found below 2.0. The recoveries obtained (99.25%–101.66%) ensured the accuracy of the developed method. The degradation products as well as the pharmaceutical excipients were well resolved from the pure drug. The expanded uncertainty (5.63%) of the method was also estimated from method validation data. Accordingly, the proposed validated and sustainable procedure was proved to be suitable for routine analyzing and stability studies of diltiazem in pharmaceutical preparations.


Author(s):  
S. K. REEHANA ◽  
K. SUJANA

Objective: The current study focused on the development, validation, and characterization of forced degradation products using LC-MS/MS. Methods: A simple, selective, validated and well-defined isocratic HPLC methodology for the quantitative determination of Tucatinib at a wavelength of 239 nm. An isocratic elution of samples was performed on an Inertsil ODS (250x4.6 mm, 5m) column with a mobile phase of 70:30v/v Acetonitrile and formic acid (0.1%) delivered at a flow rate of 1.0 ml/min. MS/MS was used to characterize degradation products formed in the forced degradation study. The validation and characterization of forced degradation products were performed in accordance with ICH guidelines. Results: Over the concentration range of 5-100μg/ml, a good linear response was obtained. Tucatinib's LOD and LOQ were determined to be 0.05 and 0.5, respectively. According to standard guidelines, the method was quantitatively evaluated in terms of system suitability, linearity, precision, accuracy, and robustness, and the results were found to be within acceptable limits. The drug was degraded under acidic, alkaline, and reduction conditions in forced degradation studies. Conclusion: The method was found to be applicable for routine tucatinib analysis. Because no LC-MS/MS method for estimating tucatinib and its degradation products has been reported in the literature. There is a need to develop a method for studying the entire tucatinib degradation pathway.


2017 ◽  
Vol 9 (5) ◽  
pp. 1
Author(s):  
Shweta Mishra ◽  
C. J. Patel ◽  
M. M. Patel

Objective: This study aims to develop and validate a stability indicating HPLC method for simultaneous estimation of sacubitril and valsartan in pharmaceutical dosage form.Methods: Sacubitril and valsartan separation were achieved by LC-20 AT C18 (250 mm x 4.6 mm) column and buffer (potassium phosphate, pH 3.0): methanol (50:50) as mobile phase, at a flow rate of 1 ml/min (millilitre per minute). Detection was carried out at 224 nm (nanometer). The different HPLC experimental parameters were optimized and the method was validated according to the standard guideline. Forced degradation experiments were carried out by exposing sacubitril and valsartan standard and sample for thermal, photolytic, oxidative and acid-base hydrolytic stress conditions.Results: Retention time of sacubitril and valsartan were found to be 4.170 min (minute) and 6.530 min (minute) respectively. The method has been validated for linearity, accuracy, precision, LOD, and LOQ. Linearity observed for sacubitril is 12.25-36.75 μg/ml (microgram per milliliter) and for valsartan is 12.75-38.25 μg/ml (microgram per milliliter). The results showed that sacubitril and valsartan and the other degradation products were fully resolved and thus the proposed method is stability-indicating.Conclusion: The proposed HPLC method was found to be simple, specific, precise, accurate, rapid and economical for simultaneous estimation of valsartan and sacubitril in bulk and tablet dosage form. Thus the validated economical method was applied for forced degradation study of sacubitril and valsartan tablet.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Minoo Afshar ◽  
Niloufar Salkhordeh ◽  
Mehdi Rajabi

A green, simple, and stability-indicating RP-HPLC method was developed for simultaneous determination of permethrin isomers in pharmaceutical preparations. The separation was based on a C18analytical column (150 × 4.6 mm, i.d., 5 μm). The mobile phase consisted of ethanol: phosphoric acid solution (pH = 3) (67 : 33, v/v). The elution was carried out at 30°C temperature with a flow rate of 1.0 mL/min. Quantitation was achieved with UV detection at 215 nm. In forced degradation studies, the drug was subjected to oxidation, hydrolysis, photolysis, and heat. The method was validated for specificity, linearity, precision, accuracy, and robustness. The applied procedure was found to be linear in permethrin concentration range of 0.5–50 μg/mL with correlation coefficients of 0.9996 for each isomer. Precision was evaluated by replicate analysis in which % relative standard deviation (RSD) values for areas were found below 2.0. The recoveries obtained (99.24%–100.72%) ensured the accuracy of the developed method. The peaks of permethrin isomers well resolved from various degradation products as well as the pharmaceutical excipients. Accordingly, the proposed validated and sustainable procedure was proved to be proper for routine analyzing and stability studies of permethrin in pharmaceutical preparations.


2012 ◽  
Vol 10 (1) ◽  
pp. 121-126 ◽  
Author(s):  
Przemysław Zalewski ◽  
Judyta Cielecka-Piontek ◽  
Anna Jelińska

AbstractThe stability-indicating LC assay method was developed and validated for quantitative determination of cefoselis sulphate in the presence of degradation products formed during the forced degradation studies. An isocratic, RP-HPLC method was developed with C-18 (250 × 4.6 mm, 5 µm) column and 12 mM ammonium acetate-acetonitrile (95:5 V/V) as a mobile phase. The flow rate of the mobile phase was 1.0 mL min−1. Detection wavelength was 260 nm and temperature was 30°C. Cefoselis similarly to other cephalosporins was subjected to stress conditions of degradation in aqueous solutions including hydrolysis, oxidation, photolysis and thermal degradation. The developed method was validated with regard to linearity, accuracy, precision, selectivity and robustness. The method was applied successfully for identification and determination of cefoselis sulphate in pharmaceuticals and during kinetic studies.


2020 ◽  
Vol 5 (1) ◽  
pp. 51-55
Author(s):  
K.V. Ramanjaneyulu ◽  
K. Venkata Ramana ◽  
M. Prasada Rao

The objective of this study was to develop and validate a method for simultaneous quantitative analysis of allopurinol and lesinurad in bulk drug and pharmaceutical formulations. An isocratic HPLC analysis method using a reverse phase Waters spherisorb ODS1 C18 column (250 mm × 4.6 mm, 5 μ) and a simple mobile phase without buffer was developed, optimized and fully validated. Analyses were carried out at a flow rate of 0.9 mL/min at 50 °C and monitored at 246 nm. This HPLC method exhibited good linearity, accuracy and selectivity. The recovery (accuracy) of both allopurinol and lesinurad from all matrices was greater than 98 %. The allopurinol and lesinurad peak detected in the samples of a forced degradation study and no interference of excepients or the degradation products formed during stress study. The method was rugged with good intra- and inter-day precision and sensitive. This stability indicating HPLC method was selective, accurate and precise for the simultaneous analysis of allopurinol and lesinurad in pharmaceutical formulations.


2020 ◽  
Vol 10 (2) ◽  
pp. 2309-2319

A simple, fast, and selective HPLC method is presented to quantified amphotericin B (AmB) in a nose-to-brain nanoliposomal pharmaceutical formulation. The development was based on the design of experiments (DoE) approach. The chromatographic analysis was validated on a C18 Zorbax reversed-phase column (250 mm x 4,6 mm I.D.) with 5 µm of particle size using mobile phase, consisting of a binary mixture of ultra-purified water and an organic composition of acetonitrile, methanol, and tetrahydrofuran (75:17:8, v/v). The isocratic flow rate was 1.0 mL.min-1, and the detection at 383 nm. The 12 minutes running time being selective between the main peak from possible degradation products, linear and accurate for the concentration range of 0.5 to 7.0 μg.mL-1, and precise demonstrating a relative standard deviation of 0.01 % (n = 6). Application of this method to assay and stability studies of AmB in nanoliposomal lipid-based is provided.


Author(s):  
MEHJABEEN SHAIKH ◽  
ARUNA P. JADHAV

Objective: The objective of the present work was to establish a simple, precise, accurate and robust method for simultaneous estimation of gallic acid, curcumin and piperine from the marketed ayurvedic formulation by liquid chromatography. Methods: The separation was carried out on Hemochrom C18 Column (250 mm × 4.6 mm ID, 5 µm pore size) with a mobile phase methanol: acetonitrile: water (pH 3.2adjusted by using orthophosphate acid) in the ratio 70:20:10v/v by isocratic elution modeat 25 °C and the flow rate was setat0.8 ml/min. The analysis was carried out atisoabsorptive wavelength of 295 nm. Results: The retention time of gallic acid, curcumin and piperine was found to be 3.3(±0.2), 4.7 (±0.2) and 5.6 (±0.2) min, respectively. The linearity range for gallic acid, curcumin and piperine was found to be 10-70 μg/ml, 20-80 µg/ml and 2-14 µg/ml, respectively with the coefficient of linear regression greater than 0.99 for all markers. Mean percent recoveries for gallic acid, curcumin, and piperine were found within the limit of acceptance (99-100%). The percent relative standard deviation (%RSD) for precision and robustness was found less than 2%, which indicates the method is precise and robust. The developed method applied for quantification of these markers from the marketed ayurvedic formulation of Dekofcyn tablet. Conclusion: The developed method was found to be simple, rapid, precise and reproducible for standardization of Dekofcyn tablet and can be useful for other formulations containing these three markers.


Sign in / Sign up

Export Citation Format

Share Document